Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

Ricardo Rajsbaum Gorodezky, Randy A. Albrecht, May K. Wang, Natalya P. Maharaj, Gijs A. Versteeg, Estanislao Nistal-Villán, Adolfo García-Sastre, Michaela U. Gack

Research output: Contribution to journalArticle

137 Citations (Scopus)

Abstract

Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

Original languageEnglish (US)
Article numbere1003059
JournalPLoS Pathogens
Volume8
Issue number11
DOIs
StatePublished - Nov 2012
Externally publishedYes

Fingerprint

Ubiquitination
Influenza A virus
Interferons
Ubiquitin-Protein Ligases
Viral Tropism
Proteins
Viruses
Swine
Interferon Type I
Viral RNA
Orthomyxoviridae
Immunoprecipitation
Human Influenza
Antiviral Agents
Chickens

ASJC Scopus subject areas

  • Microbiology
  • Parasitology
  • Virology
  • Immunology
  • Genetics
  • Molecular Biology

Cite this

Rajsbaum Gorodezky, R., Albrecht, R. A., Wang, M. K., Maharaj, N. P., Versteeg, G. A., Nistal-Villán, E., ... Gack, M. U. (2012). Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 8(11), [e1003059]. https://doi.org/10.1371/journal.ppat.1003059

Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. / Rajsbaum Gorodezky, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

In: PLoS Pathogens, Vol. 8, No. 11, e1003059, 11.2012.

Research output: Contribution to journalArticle

Rajsbaum Gorodezky, R, Albrecht, RA, Wang, MK, Maharaj, NP, Versteeg, GA, Nistal-Villán, E, García-Sastre, A & Gack, MU 2012, 'Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein', PLoS Pathogens, vol. 8, no. 11, e1003059. https://doi.org/10.1371/journal.ppat.1003059
Rajsbaum Gorodezky, Ricardo ; Albrecht, Randy A. ; Wang, May K. ; Maharaj, Natalya P. ; Versteeg, Gijs A. ; Nistal-Villán, Estanislao ; García-Sastre, Adolfo ; Gack, Michaela U. / Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. In: PLoS Pathogens. 2012 ; Vol. 8, No. 11.
@article{cbdc95ae77aa4325974d3bd9bfe1147f,
title = "Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein",
abstract = "Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.",
author = "{Rajsbaum Gorodezky}, Ricardo and Albrecht, {Randy A.} and Wang, {May K.} and Maharaj, {Natalya P.} and Versteeg, {Gijs A.} and Estanislao Nistal-Vill{\'a}n and Adolfo Garc{\'i}a-Sastre and Gack, {Michaela U.}",
year = "2012",
month = "11",
doi = "10.1371/journal.ppat.1003059",
language = "English (US)",
volume = "8",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

AU - Rajsbaum Gorodezky, Ricardo

AU - Albrecht, Randy A.

AU - Wang, May K.

AU - Maharaj, Natalya P.

AU - Versteeg, Gijs A.

AU - Nistal-Villán, Estanislao

AU - García-Sastre, Adolfo

AU - Gack, Michaela U.

PY - 2012/11

Y1 - 2012/11

N2 - Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

AB - Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

UR - http://www.scopus.com/inward/record.url?scp=84870820660&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870820660&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1003059

DO - 10.1371/journal.ppat.1003059

M3 - Article

C2 - 23209422

AN - SCOPUS:84870820660

VL - 8

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 11

M1 - e1003059

ER -