TY - JOUR
T1 - Specific interaction of wild-type and truncated mouse N-methylpurine- DNA glycosylase with ethenoadenine-containing DNA
AU - Roy, Rabindra
AU - Biswas, Tapan
AU - Hazra, Tapas K.
AU - Roy, Gargi
AU - Grabowski, David T.
AU - Izumi, Tadahide
AU - Srinivasan, Ganesan
AU - Mitra, Sankar
PY - 1998/1/13
Y1 - 1998/1/13
N2 - N-methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, is responsible for the removal of a wide variety of alkylated base lesions in DNA, e.g., N-alkylpurines and cyclic ethenoadducts of adenine, guanine, and cytosine. These lesions, some of which are mutagenic and toxic, are generated endogenously or by genotoxic agents such as N-alkylnitrosamines and vinyl chloride. Wild-type mouse MPG, expressed from recombinant baculovirus, was purified to near homogeneity for studying its specific interaction with substrate, 1,N6-ethenoadenine- (̇A-) containing DNA. Electrophoretic mobility shift assays (EMSA) indicated that MPG formed a specific complex with a 50-mer ̇A containing duplex oligonucleotide. This complex was shown to be a transient reaction intermediate, because it could be formed only with the unreacted substrate and contained active enzyme molecules. DNA footprinting studies confirmed the specific binding of the protein to the εA-containing oligonucleotide; eight nucleotides on the εA-containing strand and 16-17 nucleotides in the complementary strand spanning the base adduct were protected from DNase I digestion. A systemic deletion analysis of MPG was carried out in order to determine the minimally sized polypeptide capable of forming a stable substrate complex that is also suitable for characterization by NMR spectroscopy and X-ray crystallography. A truncated polypeptide (NΔ100CΔ18) lacking 100 and 18 amino acid residues from the amino and carboxyl termini, respectively, was found to be the minimal size that retained activity. The truncated and wild-type enzymes have similar kinetic properties. Moreover, both EMSA and DNase I footprinting studies indicated identical pattern of specific binding by the truncated and full- length polypeptides. Removal of five and nine additional residues from the amino- and carboxyl-termini of this polypeptide, respectively, resulted in a complete loss of activity. These results suggest that minimal structural change occurred as a result of truncation in the NΔ100CΔ18 mutant, which may thus be suitable for elucidating the structure and mechanism of MPG.
AB - N-methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, is responsible for the removal of a wide variety of alkylated base lesions in DNA, e.g., N-alkylpurines and cyclic ethenoadducts of adenine, guanine, and cytosine. These lesions, some of which are mutagenic and toxic, are generated endogenously or by genotoxic agents such as N-alkylnitrosamines and vinyl chloride. Wild-type mouse MPG, expressed from recombinant baculovirus, was purified to near homogeneity for studying its specific interaction with substrate, 1,N6-ethenoadenine- (̇A-) containing DNA. Electrophoretic mobility shift assays (EMSA) indicated that MPG formed a specific complex with a 50-mer ̇A containing duplex oligonucleotide. This complex was shown to be a transient reaction intermediate, because it could be formed only with the unreacted substrate and contained active enzyme molecules. DNA footprinting studies confirmed the specific binding of the protein to the εA-containing oligonucleotide; eight nucleotides on the εA-containing strand and 16-17 nucleotides in the complementary strand spanning the base adduct were protected from DNase I digestion. A systemic deletion analysis of MPG was carried out in order to determine the minimally sized polypeptide capable of forming a stable substrate complex that is also suitable for characterization by NMR spectroscopy and X-ray crystallography. A truncated polypeptide (NΔ100CΔ18) lacking 100 and 18 amino acid residues from the amino and carboxyl termini, respectively, was found to be the minimal size that retained activity. The truncated and wild-type enzymes have similar kinetic properties. Moreover, both EMSA and DNase I footprinting studies indicated identical pattern of specific binding by the truncated and full- length polypeptides. Removal of five and nine additional residues from the amino- and carboxyl-termini of this polypeptide, respectively, resulted in a complete loss of activity. These results suggest that minimal structural change occurred as a result of truncation in the NΔ100CΔ18 mutant, which may thus be suitable for elucidating the structure and mechanism of MPG.
UR - http://www.scopus.com/inward/record.url?scp=0032512439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032512439&partnerID=8YFLogxK
U2 - 10.1021/bi972313l
DO - 10.1021/bi972313l
M3 - Article
C2 - 9425080
AN - SCOPUS:0032512439
SN - 0006-2960
VL - 37
SP - 580
EP - 589
JO - Biochemistry
JF - Biochemistry
IS - 2
ER -