SplicerAV: A tool for mining microarray expression data for changes in RNA processing

Timothy J. Robinson, Michaela A. Dinan, Mark Dewhirst, Mariano Garcia-Blanco, James L. Pearson

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Background: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets.Results: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets.Conclusions: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.

Original languageEnglish (US)
Article number108
JournalBMC Bioinformatics
Volume11
DOIs
StatePublished - Feb 25 2010
Externally publishedYes

Fingerprint

Microarrays
RNA
Microarray
Messenger RNA
Mining
Protein Isoforms
RNA Isoforms
Breast Neoplasms
Processing
Oncogenes
Genes
Microarray Data
Gene
Breast Cancer
Gene expression
Gene Expression
Tumors
Activation
Tumor
Cancer

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Structural Biology
  • Applied Mathematics

Cite this

SplicerAV : A tool for mining microarray expression data for changes in RNA processing. / Robinson, Timothy J.; Dinan, Michaela A.; Dewhirst, Mark; Garcia-Blanco, Mariano; Pearson, James L.

In: BMC Bioinformatics, Vol. 11, 108, 25.02.2010.

Research output: Contribution to journalArticle

Robinson, Timothy J. ; Dinan, Michaela A. ; Dewhirst, Mark ; Garcia-Blanco, Mariano ; Pearson, James L. / SplicerAV : A tool for mining microarray expression data for changes in RNA processing. In: BMC Bioinformatics. 2010 ; Vol. 11.
@article{563bc1741aad4752acc37417352215d1,
title = "SplicerAV: A tool for mining microarray expression data for changes in RNA processing",
abstract = "Background: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets.Results: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets.Conclusions: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.",
author = "Robinson, {Timothy J.} and Dinan, {Michaela A.} and Mark Dewhirst and Mariano Garcia-Blanco and Pearson, {James L.}",
year = "2010",
month = "2",
day = "25",
doi = "10.1186/1471-2105-11-108",
language = "English (US)",
volume = "11",
journal = "BMC Bioinformatics",
issn = "1471-2105",
publisher = "BioMed Central",

}

TY - JOUR

T1 - SplicerAV

T2 - A tool for mining microarray expression data for changes in RNA processing

AU - Robinson, Timothy J.

AU - Dinan, Michaela A.

AU - Dewhirst, Mark

AU - Garcia-Blanco, Mariano

AU - Pearson, James L.

PY - 2010/2/25

Y1 - 2010/2/25

N2 - Background: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets.Results: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets.Conclusions: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.

AB - Background: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets.Results: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets.Conclusions: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.

UR - http://www.scopus.com/inward/record.url?scp=77950400895&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950400895&partnerID=8YFLogxK

U2 - 10.1186/1471-2105-11-108

DO - 10.1186/1471-2105-11-108

M3 - Article

C2 - 20184770

AN - SCOPUS:77950400895

VL - 11

JO - BMC Bioinformatics

JF - BMC Bioinformatics

SN - 1471-2105

M1 - 108

ER -