Structural and functional attributes of zona pellucida glycoproteins.

Satish K. Gupta, Sanchita Chakravarty, K. Suraj, Pankaj Bansal, Anasua Ganguly, Manish K. Jain, Beena Bhandari

Research output: Contribution to journalReview article

19 Scopus citations

Abstract

A translucent matrix termed the zona pellucida (ZP) surrounds the mammalian oocyte. It plays a critical role in fertilization by acting as a "docking site" for binding of spermatozoa followed by induction of the acrosome reaction in the zona bound sperm. Recent analyses of the genes of the human oocyte revealed that the ZP matrix is composed of four glycoproteins, designated as ZP1, ZP2, ZP3 and ZP4, instead of 3 found in the mouse ZP. Comparison of the deduced amino acid (aa) sequences of the human ZP glycoproteins with those from various species, revealed that these are evolutionarily conserved. Phylogenetic analysis revealed that ZP1 and ZP4 may be related as these have the highest sequence identity at the aa level within a given species. Each zona protein has a signal sequence driving these proteins to the endoplasmic reticulum, a aproximately 260 aa long 'ZP domain' comprising of 8-10 conserved cysteine residues, a C-terminal, hydrophobic transmembrane-like region and a short cytoplasmic tail. In order to understand the structure-function relationship of human ZP glycoproteins, our lab has cloned and expressed ZP2, ZP3 and ZP4 proteins both in E. coli as well as baculovirus expression systems. Simultaneously, our group has been able to amplify the cDNA encoding human ZP1. Employing baculovirus-expressed recombinant ZP glycoproteins; our group has provided evidence for the first time that in human, in addition to ZP3, ZP4 is also able to induce acrosomal exocytosis in the capacitated spermatozoa. ZP3 mediated induction of the acrosome reaction can be inhibited by pertussis toxin suggesting the involvement of G, protein in downstream signaling in contrast to ZP4, which follows a G, protein independent pathway. Hence, elucidation of the role of individual ZP glycoproteins in humans will provide a better insight into the gamete interaction culminating in fertilization.

Original languageEnglish (US)
Pages (from-to)203-216
Number of pages14
JournalSociety of Reproduction and Fertility supplement
Volume63
StatePublished - 2007

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Structural and functional attributes of zona pellucida glycoproteins.'. Together they form a unique fingerprint.

  • Cite this

    Gupta, S. K., Chakravarty, S., Suraj, K., Bansal, P., Ganguly, A., Jain, M. K., & Bhandari, B. (2007). Structural and functional attributes of zona pellucida glycoproteins. Society of Reproduction and Fertility supplement, 63, 203-216.