Structural equilibrium of DNA represented with different force fields

Michael Feig, Bernard Pettitt

Research output: Contribution to journalArticle

116 Citations (Scopus)

Abstract

We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) · d(A5G5) (Feig, M. and B. M. Pettitt, 1997, Experiment vs. Force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. 101:7361- 7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.

Original languageEnglish (US)
Pages (from-to)134-149
Number of pages16
JournalBiophysical Journal
Volume75
Issue number1
StatePublished - 1998
Externally publishedYes

Fingerprint

DNA
Molecular Dynamics Simulation
A-Form DNA
B-Form DNA
Nucleic Acid Conformation
Thymine
Cytosine
Guanine
Adenine
pyrimidine
purine

ASJC Scopus subject areas

  • Biophysics

Cite this

Structural equilibrium of DNA represented with different force fields. / Feig, Michael; Pettitt, Bernard.

In: Biophysical Journal, Vol. 75, No. 1, 1998, p. 134-149.

Research output: Contribution to journalArticle

@article{09f9cc4cae004e3dbffeeaa9a3c4c327,
title = "Structural equilibrium of DNA represented with different force fields",
abstract = "We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) · d(A5G5) (Feig, M. and B. M. Pettitt, 1997, Experiment vs. Force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. 101:7361- 7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.",
author = "Michael Feig and Bernard Pettitt",
year = "1998",
language = "English (US)",
volume = "75",
pages = "134--149",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "1",

}

TY - JOUR

T1 - Structural equilibrium of DNA represented with different force fields

AU - Feig, Michael

AU - Pettitt, Bernard

PY - 1998

Y1 - 1998

N2 - We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) · d(A5G5) (Feig, M. and B. M. Pettitt, 1997, Experiment vs. Force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. 101:7361- 7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.

AB - We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) · d(A5G5) (Feig, M. and B. M. Pettitt, 1997, Experiment vs. Force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. 101:7361- 7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.

UR - http://www.scopus.com/inward/record.url?scp=0031808069&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031808069&partnerID=8YFLogxK

M3 - Article

VL - 75

SP - 134

EP - 149

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 1

ER -