TY - JOUR
T1 - Structure-based discovery of dengue virus protease inhibitors
AU - Tomlinson, Suzanne M.
AU - Malmstrom, Robert D.
AU - Russo, Andrew
AU - Mueller, Niklaus
AU - Pang, Yuan Ping
AU - Watowich, Stanley J.
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/6
Y1 - 2009/6
N2 - Dengue virus belongs to the family Flaviviridae and is a major emerging pathogen for which the development of vaccines and antiviral therapy has seen little success. The NS3 viral protease is a potential target for antiviral drugs since it is required for virus replication. The goal of this study was to identify novel dengue virus (type 2; DEN2V) protease inhibitors for eventual development as effective anti-flaviviral drugs. The EUDOC docking program was used to computationally screen a small-molecule library for compounds that dock into the P1 pocket and the catalytic site of the DEN2V NS3 protease domain apo-structure [Murthy, K., Clum, S., Padmanabhan, R., 1999. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem. 274, 5573-5580] and the Bowman-Birk inhibitor-bound structure [Murthy, K., Judge, K., DeLucas, L., Padmanabhan, R., 2000. Crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J. Mol. Biol. 301, 759-767]. The top 20 computer-identified hits that demonstrated the most favorable scoring "energies" were selected for in vitro assessment of protease inhibition. Preliminary protease activity assays demonstrated that more than half of the tested compounds were soluble and exhibited in vitro inhibition of the DEN2V protease. Two of these compounds also inhibited viral replication in cell culture experiments, and thus are promising compounds for further development.
AB - Dengue virus belongs to the family Flaviviridae and is a major emerging pathogen for which the development of vaccines and antiviral therapy has seen little success. The NS3 viral protease is a potential target for antiviral drugs since it is required for virus replication. The goal of this study was to identify novel dengue virus (type 2; DEN2V) protease inhibitors for eventual development as effective anti-flaviviral drugs. The EUDOC docking program was used to computationally screen a small-molecule library for compounds that dock into the P1 pocket and the catalytic site of the DEN2V NS3 protease domain apo-structure [Murthy, K., Clum, S., Padmanabhan, R., 1999. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem. 274, 5573-5580] and the Bowman-Birk inhibitor-bound structure [Murthy, K., Judge, K., DeLucas, L., Padmanabhan, R., 2000. Crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J. Mol. Biol. 301, 759-767]. The top 20 computer-identified hits that demonstrated the most favorable scoring "energies" were selected for in vitro assessment of protease inhibition. Preliminary protease activity assays demonstrated that more than half of the tested compounds were soluble and exhibited in vitro inhibition of the DEN2V protease. Two of these compounds also inhibited viral replication in cell culture experiments, and thus are promising compounds for further development.
KW - Dengue virus
KW - Flavivirus
KW - NS2B-NS3
KW - Protease
KW - Small-molecule inhibitor
UR - http://www.scopus.com/inward/record.url?scp=64749108083&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64749108083&partnerID=8YFLogxK
U2 - 10.1016/j.antiviral.2009.02.190
DO - 10.1016/j.antiviral.2009.02.190
M3 - Article
C2 - 19428601
AN - SCOPUS:64749108083
SN - 0166-3542
VL - 82
SP - 110
EP - 114
JO - Antiviral research
JF - Antiviral research
IS - 3
ER -