Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont

Nicole Koropatkin, Eric C. Martens, Jeffrey I. Gordon, Thomas Smith

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane β-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of β-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved alpha;-helical fold the SusD family suggests a similar function in glycan uptake.

Original languageEnglish (US)
Pages (from-to)1532-1542
Number of pages11
JournalBiochemistry
Volume48
Issue number7
DOIs
StatePublished - Feb 24 2009
Externally publishedYes

Fingerprint

Mucins
Polysaccharides
Aptitude
Amino Acid Sequence
Carrier Proteins
Ligands
Amino Acids
Peptides
Membrane Transport Proteins
Acetylglucosamine
Hydrogen Bonding
Galactose
Metabolism
Sugars
Starch
Lipoproteins
Conformations
Bacteria
Hydrogen bonds
Association reactions

ASJC Scopus subject areas

  • Biochemistry

Cite this

Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont. / Koropatkin, Nicole; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas.

In: Biochemistry, Vol. 48, No. 7, 24.02.2009, p. 1532-1542.

Research output: Contribution to journalArticle

Koropatkin, Nicole ; Martens, Eric C. ; Gordon, Jeffrey I. ; Smith, Thomas. / Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont. In: Biochemistry. 2009 ; Vol. 48, No. 7. pp. 1532-1542.
@article{fba06c76be294f98a56352fa0a9af945,
title = "Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont",
abstract = "Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane β-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of β-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved alpha;-helical fold the SusD family suggests a similar function in glycan uptake.",
author = "Nicole Koropatkin and Martens, {Eric C.} and Gordon, {Jeffrey I.} and Thomas Smith",
year = "2009",
month = "2",
day = "24",
doi = "10.1021/bi801942a",
language = "English (US)",
volume = "48",
pages = "1532--1542",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont

AU - Koropatkin, Nicole

AU - Martens, Eric C.

AU - Gordon, Jeffrey I.

AU - Smith, Thomas

PY - 2009/2/24

Y1 - 2009/2/24

N2 - Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane β-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of β-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved alpha;-helical fold the SusD family suggests a similar function in glycan uptake.

AB - Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane β-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of β-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved alpha;-helical fold the SusD family suggests a similar function in glycan uptake.

UR - http://www.scopus.com/inward/record.url?scp=61749091234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=61749091234&partnerID=8YFLogxK

U2 - 10.1021/bi801942a

DO - 10.1021/bi801942a

M3 - Article

VL - 48

SP - 1532

EP - 1542

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 7

ER -