Structures of Mox W (3-x) O6 (x=0-3) anion and neutral clusters determined by anion photoelectron spectroscopy and density functional theory calculations

David W. Rothgeb, Ekram Hossain, Angela T. Kuo, Jennifer L. Troyer, Caroline Chick Jarrold

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

The structures of Mo3 O6, Mo2 WO 6, MoW2 O6, and W3 O6 and their associated anions were studied using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The 3.49 eV photon energy anion PE spectra of all four species showed broad electronic bands with origins near 2.8 eV. Calculations predict that low-spin, cyclic structures are the lowest energy isomers for both the anion and neutral species. The lowest energy neutral structures for all four species are analogous, C 3v (Mo3 O6 and W3 O6) or Cs (mixed clusters) symmetry structures in which all three metal atoms are in formally equivalent oxidation states, with singlet ground electronic states. The lowest energy isomers predicted for Mo3 O 6- and W3 O6- are the same with doublet electronic states. The lowest energy structures calculated for the mixed anions are lower symmetry, with the tungsten centers in higher oxidation states than the molybdenum centers. However, Cs symmetry structures are competitive, and appear to be the primary contributors to the observed spectra. Spectral simulations based on calculated spectroscopic parameters validate the assignments. This series of clusters is strikingly different from the Mo 2 O4 / MoWO4 / W2 O4 anion and neutral series described recently [Mayhall, J. Chem. Phys. 130, 124313 (2009)]. While the average oxidation state is the same for both series, the structures determined for the Mo2 O4 / MoWO4 / W2 O4 anions and neutrals were dissimilar and lower symmetry, and high spin states were energetically favored. This difference is attributed to the large stabilizing effect of electronic delocalization in the more symmetric trimetallic cyclic structures that is not available in the bimetallic species.

Original languageEnglish (US)
Article number044310
JournalJournal of Chemical Physics
Volume131
Issue number4
DOIs
StatePublished - Aug 11 2009

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this