Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term

Richard E. Frye, Khader Hasan, Benjamin Malmberg, Laura Desouza, Paul Swank, Karen SMITH, Susan Landry

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Aim: To understand the relationship between cognition and white-matter structure in adolescents born preterm without obvious brain injury. Methods: Thirty-two adolescents from a longitudinal study of child development were selected according to risk of developmental disorders at birth (born at term: eight males, five females; median age 16y 1mo, interquartile range 10mo; low risk preterm: four males, five females, median age 16y, range 4mo; high risk preterm: three males, seven females, median age 16y 2mo, range 1y 2mo) and reading ability (good: three males, eight females, median age 16y, range 7mo; average: six males, three females, median age 16y 10mo, range 1y; poor: six males, six females, median age 16y, range 6mo). Preterm birth was defined as a gestational age of 36 weeks or less and a birthweight of 1600g or less. All participants had normal clinical neuroimaging findings. We examined fractional anisotropy, radial diffusivity, and volume of three major white-matter fasciculi. The relationship between structural measures and birth risk, hemisphere, and cognitive ability (attention, lexical and sublexical decoding, auditory phonological awareness, and processing speed) were analysed using mixed-model regression. Results: Left-hemisphere superior longitudinal fasciculus (SLF) fractional anisotropy and radial diffusivity were linked to reading-related skills (fractional anisotropy vs letter-word identification, r(30)=-0.37, p<0.05; fractional anisotropy vs phoneme reversal, r(30)=-0.34, p=0.05; radial diffusivity vs letter-word identification, r(30)=0.31, p<0.10; radial diffusivity vs phoneme reversal, r(30)=0.40, p<0.05), whereas right-hemisphere SLF fractional anisotropy was related to attention skills (fractional anisotropy vs inattentiveness, r(30)=-0.38, p<0.05). SLF volume decreased as these skills declined for adolescents born preterm (volume vs phoneme reversal, r(17)=0.58, p<0.01; volume vs inattentiveness, r(17)=-0.69, p<0.01), but not for those born at term. Interpretation: The relationship between cognitive skills and SLF volume suggests that in adolescents born preterm, cryptic white-matter injury may exist, possibly related to oligodendrocyte or axonal loss, despite normal clinical neuroimaging.

Original languageEnglish (US)
Pages (from-to)760-766
Number of pages7
JournalDevelopmental Medicine and Child Neurology
Volume52
Issue number8
DOIs
StatePublished - Aug 2010

Fingerprint

Anisotropy
Aptitude
Neuroimaging
Reading
Parturition
Oligodendroglia
Premature Birth
Child Development
Brain Injuries
Cognition
Gestational Age
Longitudinal Studies
Cognitive Dysfunction
Wounds and Injuries
White Matter

ASJC Scopus subject areas

  • Clinical Neurology
  • Pediatrics, Perinatology, and Child Health
  • Developmental Neuroscience

Cite this

Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. / Frye, Richard E.; Hasan, Khader; Malmberg, Benjamin; Desouza, Laura; Swank, Paul; SMITH, Karen; Landry, Susan.

In: Developmental Medicine and Child Neurology, Vol. 52, No. 8, 08.2010, p. 760-766.

Research output: Contribution to journalArticle

Frye, Richard E. ; Hasan, Khader ; Malmberg, Benjamin ; Desouza, Laura ; Swank, Paul ; SMITH, Karen ; Landry, Susan. / Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. In: Developmental Medicine and Child Neurology. 2010 ; Vol. 52, No. 8. pp. 760-766.
@article{c8eac72ff5d04adfb5f9d5d8184c447b,
title = "Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term",
abstract = "Aim: To understand the relationship between cognition and white-matter structure in adolescents born preterm without obvious brain injury. Methods: Thirty-two adolescents from a longitudinal study of child development were selected according to risk of developmental disorders at birth (born at term: eight males, five females; median age 16y 1mo, interquartile range 10mo; low risk preterm: four males, five females, median age 16y, range 4mo; high risk preterm: three males, seven females, median age 16y 2mo, range 1y 2mo) and reading ability (good: three males, eight females, median age 16y, range 7mo; average: six males, three females, median age 16y 10mo, range 1y; poor: six males, six females, median age 16y, range 6mo). Preterm birth was defined as a gestational age of 36 weeks or less and a birthweight of 1600g or less. All participants had normal clinical neuroimaging findings. We examined fractional anisotropy, radial diffusivity, and volume of three major white-matter fasciculi. The relationship between structural measures and birth risk, hemisphere, and cognitive ability (attention, lexical and sublexical decoding, auditory phonological awareness, and processing speed) were analysed using mixed-model regression. Results: Left-hemisphere superior longitudinal fasciculus (SLF) fractional anisotropy and radial diffusivity were linked to reading-related skills (fractional anisotropy vs letter-word identification, r(30)=-0.37, p<0.05; fractional anisotropy vs phoneme reversal, r(30)=-0.34, p=0.05; radial diffusivity vs letter-word identification, r(30)=0.31, p<0.10; radial diffusivity vs phoneme reversal, r(30)=0.40, p<0.05), whereas right-hemisphere SLF fractional anisotropy was related to attention skills (fractional anisotropy vs inattentiveness, r(30)=-0.38, p<0.05). SLF volume decreased as these skills declined for adolescents born preterm (volume vs phoneme reversal, r(17)=0.58, p<0.01; volume vs inattentiveness, r(17)=-0.69, p<0.01), but not for those born at term. Interpretation: The relationship between cognitive skills and SLF volume suggests that in adolescents born preterm, cryptic white-matter injury may exist, possibly related to oligodendrocyte or axonal loss, despite normal clinical neuroimaging.",
author = "Frye, {Richard E.} and Khader Hasan and Benjamin Malmberg and Laura Desouza and Paul Swank and Karen SMITH and Susan Landry",
year = "2010",
month = "8",
doi = "10.1111/j.1469-8749.2010.03633.x",
language = "English (US)",
volume = "52",
pages = "760--766",
journal = "Developmental Medicine and Child Neurology",
issn = "0012-1622",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term

AU - Frye, Richard E.

AU - Hasan, Khader

AU - Malmberg, Benjamin

AU - Desouza, Laura

AU - Swank, Paul

AU - SMITH, Karen

AU - Landry, Susan

PY - 2010/8

Y1 - 2010/8

N2 - Aim: To understand the relationship between cognition and white-matter structure in adolescents born preterm without obvious brain injury. Methods: Thirty-two adolescents from a longitudinal study of child development were selected according to risk of developmental disorders at birth (born at term: eight males, five females; median age 16y 1mo, interquartile range 10mo; low risk preterm: four males, five females, median age 16y, range 4mo; high risk preterm: three males, seven females, median age 16y 2mo, range 1y 2mo) and reading ability (good: three males, eight females, median age 16y, range 7mo; average: six males, three females, median age 16y 10mo, range 1y; poor: six males, six females, median age 16y, range 6mo). Preterm birth was defined as a gestational age of 36 weeks or less and a birthweight of 1600g or less. All participants had normal clinical neuroimaging findings. We examined fractional anisotropy, radial diffusivity, and volume of three major white-matter fasciculi. The relationship between structural measures and birth risk, hemisphere, and cognitive ability (attention, lexical and sublexical decoding, auditory phonological awareness, and processing speed) were analysed using mixed-model regression. Results: Left-hemisphere superior longitudinal fasciculus (SLF) fractional anisotropy and radial diffusivity were linked to reading-related skills (fractional anisotropy vs letter-word identification, r(30)=-0.37, p<0.05; fractional anisotropy vs phoneme reversal, r(30)=-0.34, p=0.05; radial diffusivity vs letter-word identification, r(30)=0.31, p<0.10; radial diffusivity vs phoneme reversal, r(30)=0.40, p<0.05), whereas right-hemisphere SLF fractional anisotropy was related to attention skills (fractional anisotropy vs inattentiveness, r(30)=-0.38, p<0.05). SLF volume decreased as these skills declined for adolescents born preterm (volume vs phoneme reversal, r(17)=0.58, p<0.01; volume vs inattentiveness, r(17)=-0.69, p<0.01), but not for those born at term. Interpretation: The relationship between cognitive skills and SLF volume suggests that in adolescents born preterm, cryptic white-matter injury may exist, possibly related to oligodendrocyte or axonal loss, despite normal clinical neuroimaging.

AB - Aim: To understand the relationship between cognition and white-matter structure in adolescents born preterm without obvious brain injury. Methods: Thirty-two adolescents from a longitudinal study of child development were selected according to risk of developmental disorders at birth (born at term: eight males, five females; median age 16y 1mo, interquartile range 10mo; low risk preterm: four males, five females, median age 16y, range 4mo; high risk preterm: three males, seven females, median age 16y 2mo, range 1y 2mo) and reading ability (good: three males, eight females, median age 16y, range 7mo; average: six males, three females, median age 16y 10mo, range 1y; poor: six males, six females, median age 16y, range 6mo). Preterm birth was defined as a gestational age of 36 weeks or less and a birthweight of 1600g or less. All participants had normal clinical neuroimaging findings. We examined fractional anisotropy, radial diffusivity, and volume of three major white-matter fasciculi. The relationship between structural measures and birth risk, hemisphere, and cognitive ability (attention, lexical and sublexical decoding, auditory phonological awareness, and processing speed) were analysed using mixed-model regression. Results: Left-hemisphere superior longitudinal fasciculus (SLF) fractional anisotropy and radial diffusivity were linked to reading-related skills (fractional anisotropy vs letter-word identification, r(30)=-0.37, p<0.05; fractional anisotropy vs phoneme reversal, r(30)=-0.34, p=0.05; radial diffusivity vs letter-word identification, r(30)=0.31, p<0.10; radial diffusivity vs phoneme reversal, r(30)=0.40, p<0.05), whereas right-hemisphere SLF fractional anisotropy was related to attention skills (fractional anisotropy vs inattentiveness, r(30)=-0.38, p<0.05). SLF volume decreased as these skills declined for adolescents born preterm (volume vs phoneme reversal, r(17)=0.58, p<0.01; volume vs inattentiveness, r(17)=-0.69, p<0.01), but not for those born at term. Interpretation: The relationship between cognitive skills and SLF volume suggests that in adolescents born preterm, cryptic white-matter injury may exist, possibly related to oligodendrocyte or axonal loss, despite normal clinical neuroimaging.

UR - http://www.scopus.com/inward/record.url?scp=77952243170&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77952243170&partnerID=8YFLogxK

U2 - 10.1111/j.1469-8749.2010.03633.x

DO - 10.1111/j.1469-8749.2010.03633.x

M3 - Article

C2 - 20187879

AN - SCOPUS:77952243170

VL - 52

SP - 760

EP - 766

JO - Developmental Medicine and Child Neurology

JF - Developmental Medicine and Child Neurology

SN - 0012-1622

IS - 8

ER -