TY - JOUR
T1 - Testosterone positively regulates functional responses and nitric oxide expression in the isolated human corpus cavernosum
AU - Gur, Serap
AU - Alzweri, Laith
AU - Yilmaz-Oral, Didem
AU - Kaya-Sezginer, Ecem
AU - Abdel-Mageed, Asim B.
AU - Dick, Brian
AU - Sikka, Suresh C.
AU - Volkan Oztekin, Cetin
AU - Hellstrom, Wayne J.G.
N1 - Publisher Copyright:
© 2020 American Society of Andrology and European Academy of Andrology
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Background: Testosterone (T) deficiency is associated with erectile dysfunction (ED). The relaxant response of T on the corporal smooth muscle through a non-genomic pathway has been reported; however, the in vitro modulating effects of T on human corpus cavernosum (HCC) have not been studied. Objectives: To compare the effects of various concentrations of T on nitric oxide (NO)-dependent and nitric oxide-independent relaxation in organ bath studies and elucidate its mode of action, specifically targeting the cavernous NO/cyclic guanosine monophosphate (cGMP) pathway. Materials and methods: Human corpus cavernosum (HCC) samples were obtained from men undergoing penile prosthesis implantation (n = 9). After phenylephrine (Phe) precontraction, the effects of various relaxant drugs of HCC strips were performed using organ bath at low (150 ng/dL), eugonadal (400 ng/dL), and hypergonadal (600 ng/dL) T concentrations. The penile tissue measurements of endothelial nitric oxide synthase (eNOS), neuronal (n)NOS, and phosphodiesterase type 5 (PDE5) were evaluated via immunostaining, Western blot, cGMP and nitrite/nitrate (NOx) assays. Results: Relaxation responses to ACh and EFS in isolated HCC strips were significantly increased at all T levels compared with untreated tissues. The sildenafil-induced relaxant response was significantly increased at both eugonadal and hypergonadal T levels. Normal and high levels of T are accompanied by increased eNOS, nNOS, cGMP, and NOx levels, along with reduced PDE5 protein expression. Conclusion: This study reveals an important role of short-term and modulatory effects of different concentrations of T in HCC. T positively regulates functional activities, inhibition of PDE5 expression, and formation of cGMP and NOx in HCC. These results demonstrate that T indirectly contributes to HCC relaxation via downstream effects on nNOS, eNOS, and cGMP and by inhibiting PDE5. This action provides a rationale for normalizing T levels in hypogonadal men with ED, especially when PDE5 inhibitors are ineffective. T replacement therapy may improve erectile function by modulating endothelial function in hypogonadal men.
AB - Background: Testosterone (T) deficiency is associated with erectile dysfunction (ED). The relaxant response of T on the corporal smooth muscle through a non-genomic pathway has been reported; however, the in vitro modulating effects of T on human corpus cavernosum (HCC) have not been studied. Objectives: To compare the effects of various concentrations of T on nitric oxide (NO)-dependent and nitric oxide-independent relaxation in organ bath studies and elucidate its mode of action, specifically targeting the cavernous NO/cyclic guanosine monophosphate (cGMP) pathway. Materials and methods: Human corpus cavernosum (HCC) samples were obtained from men undergoing penile prosthesis implantation (n = 9). After phenylephrine (Phe) precontraction, the effects of various relaxant drugs of HCC strips were performed using organ bath at low (150 ng/dL), eugonadal (400 ng/dL), and hypergonadal (600 ng/dL) T concentrations. The penile tissue measurements of endothelial nitric oxide synthase (eNOS), neuronal (n)NOS, and phosphodiesterase type 5 (PDE5) were evaluated via immunostaining, Western blot, cGMP and nitrite/nitrate (NOx) assays. Results: Relaxation responses to ACh and EFS in isolated HCC strips were significantly increased at all T levels compared with untreated tissues. The sildenafil-induced relaxant response was significantly increased at both eugonadal and hypergonadal T levels. Normal and high levels of T are accompanied by increased eNOS, nNOS, cGMP, and NOx levels, along with reduced PDE5 protein expression. Conclusion: This study reveals an important role of short-term and modulatory effects of different concentrations of T in HCC. T positively regulates functional activities, inhibition of PDE5 expression, and formation of cGMP and NOx in HCC. These results demonstrate that T indirectly contributes to HCC relaxation via downstream effects on nNOS, eNOS, and cGMP and by inhibiting PDE5. This action provides a rationale for normalizing T levels in hypogonadal men with ED, especially when PDE5 inhibitors are ineffective. T replacement therapy may improve erectile function by modulating endothelial function in hypogonadal men.
KW - human corpus cavernosum
KW - hypogonadism
KW - phosphodiesterase type 5 enzyme
KW - relaxation
KW - testosterone
UR - http://www.scopus.com/inward/record.url?scp=85089655845&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089655845&partnerID=8YFLogxK
U2 - 10.1111/andr.12866
DO - 10.1111/andr.12866
M3 - Article
C2 - 32672414
AN - SCOPUS:85089655845
SN - 2047-2919
VL - 8
SP - 1824
EP - 1833
JO - Andrology
JF - Andrology
IS - 6
ER -