TY - JOUR
T1 - The effects of lung recruitment maneuvers on exhaled breath condensate pH
AU - Walsh, Brian K.
AU - Davis, Michael D.
AU - Hunt, John F.
AU - Kheir, John N.
AU - Smallwood, Craig D.
AU - Arnold, John H.
N1 - Publisher Copyright:
© 2015 IOP Publishing Ltd.
PY - 2015/9/3
Y1 - 2015/9/3
N2 - Exhaled breath condensate (EBC) pH serves as a surrogate marker of airway lining fluid (ALF) pH and can be used to evaluate airway acidification (AA). AA is known to be present in acute respiratory distress syndrome (ARDS) and can be evaluated via continuous EBC pH measurement during mechanical ventilation. Lung recruitment maneuvers (LRMs) are utilized in the treatment of ARDS, however, their impact on EBC pH has never been explored. Here we described the acute effects of two commonly used LRMs on EBC pH. In a prospective, non-randomized, serial exposure study, 10 intubated pediatric subjects with acute respiratory distress syndrome sequentially underwent: a period of baseline ventilation, sustained inflation (SI) maneuver of 40 cm H2O for 40 s, open lung ventilation, staircase recruitment strategy (SRS) (which involves a systematic ramping of plateau pressures in 5 cm H2O increments, starting at 30 cm H2O), and PEEP titration. Maximum lung recruitment during the SRS is defined as a PaO2 + PaCO2 of >400 mmHg. Following lung recruitment, PEEP titration was conducted from 20 cm H2O in 2 cm H2O decrements until a PaO2 + PaCO2 was <380 and then increased by 2 cm H2O. EBC pH, arterial blood gases, lung mechanics, hemodynamics, and function residual capacity were obtained following each phase of the LRM and observational period. Seven out of 10 patients were able to reach maximum lung recruitment. Baseline EBC pH (6.38 0.37) did not correlate with disease severity defined by PaO2/FiO2 ratio or oxygenation index (OI). Average EBC pH differed between phases and decreased after LRM (p = 0.001). EBC pH is affected by LRMs. EBC acidification following LRMs may represent a washout effect of opening acidic lung units and ventilating them or acute AA resulting from LRM.
AB - Exhaled breath condensate (EBC) pH serves as a surrogate marker of airway lining fluid (ALF) pH and can be used to evaluate airway acidification (AA). AA is known to be present in acute respiratory distress syndrome (ARDS) and can be evaluated via continuous EBC pH measurement during mechanical ventilation. Lung recruitment maneuvers (LRMs) are utilized in the treatment of ARDS, however, their impact on EBC pH has never been explored. Here we described the acute effects of two commonly used LRMs on EBC pH. In a prospective, non-randomized, serial exposure study, 10 intubated pediatric subjects with acute respiratory distress syndrome sequentially underwent: a period of baseline ventilation, sustained inflation (SI) maneuver of 40 cm H2O for 40 s, open lung ventilation, staircase recruitment strategy (SRS) (which involves a systematic ramping of plateau pressures in 5 cm H2O increments, starting at 30 cm H2O), and PEEP titration. Maximum lung recruitment during the SRS is defined as a PaO2 + PaCO2 of >400 mmHg. Following lung recruitment, PEEP titration was conducted from 20 cm H2O in 2 cm H2O decrements until a PaO2 + PaCO2 was <380 and then increased by 2 cm H2O. EBC pH, arterial blood gases, lung mechanics, hemodynamics, and function residual capacity were obtained following each phase of the LRM and observational period. Seven out of 10 patients were able to reach maximum lung recruitment. Baseline EBC pH (6.38 0.37) did not correlate with disease severity defined by PaO2/FiO2 ratio or oxygenation index (OI). Average EBC pH differed between phases and decreased after LRM (p = 0.001). EBC pH is affected by LRMs. EBC acidification following LRMs may represent a washout effect of opening acidic lung units and ventilating them or acute AA resulting from LRM.
KW - airway pH
KW - exhaled breath condensate
KW - lung recruitment
UR - http://www.scopus.com/inward/record.url?scp=84947975759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947975759&partnerID=8YFLogxK
U2 - 10.1088/1752-7155/9/3/036009
DO - 10.1088/1752-7155/9/3/036009
M3 - Article
C2 - 26333431
AN - SCOPUS:84947975759
SN - 1752-7155
VL - 9
JO - Journal of Breath Research
JF - Journal of Breath Research
IS - 3
M1 - 036009
ER -