The Escherichia coli PriA helicase has two nucleotide-binding sites differing dramatically in their affinities for nucleotide cofactors. 1. Intrinsic affinities, cooperativities, and base specificity of nucleotide cofactor binding

Aaron L. Lucius, Maria J. Jezewska, Wlodzimierz Bujalowski

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Interactions of the Escherichia coli PriA helicase with nucleotide cofactors have been studied using the fluorescence titration and analytical ultracentrifugation techniques. Binding of unmodified cofactors was characterized by the fluorescence competition titration method. The obtained data establish that at saturation the PriA helicase binds two nucleotide molecules per protein monomer. This result corroborates with the primary structure of the protein, which contains sequence motifs implicated as putative nucleotide-binding sites. The intrinsic affinities of the binding sites differ by 2-4 orders of magnitude. Thus, the PriA helicase has a strong and a weak nucleotide-binding site. The binding sites differ dramatically in their properties. The strong site is highly specific for adenosine cofactors, while the weak site shows very modest base specificity. The affinities of the strong and weak binding sites for ATP are lower than the affinities for ADP, although both sites have similar affinity for the inorganic phosphate group. Unlike the weak site, the affinity of the strong site profoundly depends on the structure of the phosphate group of the ATP cofactor. Binding of unmodified nucleotides indicates the presence of positive cooperative interactions between bound cofactors (i.e., the existence of communication between the two sites). Magnesium cations are specifically involved in controlling the cofactor affinity for the strong site, while the affinity of the weak site is predominantly determined by interactions between the phosphate group and ribose regions of the cofactor and the protein matrix. The significance of these results for the activities of the PriA helicase is discussed.

Original languageEnglish (US)
Pages (from-to)7202-7216
Number of pages15
JournalBiochemistry
Volume45
Issue number23
DOIs
StatePublished - Jun 13 2006

Fingerprint

Escherichia coli
Nucleotides
Binding Sites
Phosphates
Titration
Adenosine Triphosphate
Fluorescence
Proteins
Ribose
Ultracentrifugation
Adenosine
Adenosine Diphosphate
Magnesium
Cations
Amino Acid Sequence
Monomers
Molecules
Communication

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{6b5ae06bc6fb4bc3ba6592ba09c33648,
title = "The Escherichia coli PriA helicase has two nucleotide-binding sites differing dramatically in their affinities for nucleotide cofactors. 1. Intrinsic affinities, cooperativities, and base specificity of nucleotide cofactor binding",
abstract = "Interactions of the Escherichia coli PriA helicase with nucleotide cofactors have been studied using the fluorescence titration and analytical ultracentrifugation techniques. Binding of unmodified cofactors was characterized by the fluorescence competition titration method. The obtained data establish that at saturation the PriA helicase binds two nucleotide molecules per protein monomer. This result corroborates with the primary structure of the protein, which contains sequence motifs implicated as putative nucleotide-binding sites. The intrinsic affinities of the binding sites differ by 2-4 orders of magnitude. Thus, the PriA helicase has a strong and a weak nucleotide-binding site. The binding sites differ dramatically in their properties. The strong site is highly specific for adenosine cofactors, while the weak site shows very modest base specificity. The affinities of the strong and weak binding sites for ATP are lower than the affinities for ADP, although both sites have similar affinity for the inorganic phosphate group. Unlike the weak site, the affinity of the strong site profoundly depends on the structure of the phosphate group of the ATP cofactor. Binding of unmodified nucleotides indicates the presence of positive cooperative interactions between bound cofactors (i.e., the existence of communication between the two sites). Magnesium cations are specifically involved in controlling the cofactor affinity for the strong site, while the affinity of the weak site is predominantly determined by interactions between the phosphate group and ribose regions of the cofactor and the protein matrix. The significance of these results for the activities of the PriA helicase is discussed.",
author = "Lucius, {Aaron L.} and Jezewska, {Maria J.} and Wlodzimierz Bujalowski",
year = "2006",
month = "6",
day = "13",
doi = "10.1021/bi051826m",
language = "English (US)",
volume = "45",
pages = "7202--7216",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "23",

}

TY - JOUR

T1 - The Escherichia coli PriA helicase has two nucleotide-binding sites differing dramatically in their affinities for nucleotide cofactors. 1. Intrinsic affinities, cooperativities, and base specificity of nucleotide cofactor binding

AU - Lucius, Aaron L.

AU - Jezewska, Maria J.

AU - Bujalowski, Wlodzimierz

PY - 2006/6/13

Y1 - 2006/6/13

N2 - Interactions of the Escherichia coli PriA helicase with nucleotide cofactors have been studied using the fluorescence titration and analytical ultracentrifugation techniques. Binding of unmodified cofactors was characterized by the fluorescence competition titration method. The obtained data establish that at saturation the PriA helicase binds two nucleotide molecules per protein monomer. This result corroborates with the primary structure of the protein, which contains sequence motifs implicated as putative nucleotide-binding sites. The intrinsic affinities of the binding sites differ by 2-4 orders of magnitude. Thus, the PriA helicase has a strong and a weak nucleotide-binding site. The binding sites differ dramatically in their properties. The strong site is highly specific for adenosine cofactors, while the weak site shows very modest base specificity. The affinities of the strong and weak binding sites for ATP are lower than the affinities for ADP, although both sites have similar affinity for the inorganic phosphate group. Unlike the weak site, the affinity of the strong site profoundly depends on the structure of the phosphate group of the ATP cofactor. Binding of unmodified nucleotides indicates the presence of positive cooperative interactions between bound cofactors (i.e., the existence of communication between the two sites). Magnesium cations are specifically involved in controlling the cofactor affinity for the strong site, while the affinity of the weak site is predominantly determined by interactions between the phosphate group and ribose regions of the cofactor and the protein matrix. The significance of these results for the activities of the PriA helicase is discussed.

AB - Interactions of the Escherichia coli PriA helicase with nucleotide cofactors have been studied using the fluorescence titration and analytical ultracentrifugation techniques. Binding of unmodified cofactors was characterized by the fluorescence competition titration method. The obtained data establish that at saturation the PriA helicase binds two nucleotide molecules per protein monomer. This result corroborates with the primary structure of the protein, which contains sequence motifs implicated as putative nucleotide-binding sites. The intrinsic affinities of the binding sites differ by 2-4 orders of magnitude. Thus, the PriA helicase has a strong and a weak nucleotide-binding site. The binding sites differ dramatically in their properties. The strong site is highly specific for adenosine cofactors, while the weak site shows very modest base specificity. The affinities of the strong and weak binding sites for ATP are lower than the affinities for ADP, although both sites have similar affinity for the inorganic phosphate group. Unlike the weak site, the affinity of the strong site profoundly depends on the structure of the phosphate group of the ATP cofactor. Binding of unmodified nucleotides indicates the presence of positive cooperative interactions between bound cofactors (i.e., the existence of communication between the two sites). Magnesium cations are specifically involved in controlling the cofactor affinity for the strong site, while the affinity of the weak site is predominantly determined by interactions between the phosphate group and ribose regions of the cofactor and the protein matrix. The significance of these results for the activities of the PriA helicase is discussed.

UR - http://www.scopus.com/inward/record.url?scp=33745027664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745027664&partnerID=8YFLogxK

U2 - 10.1021/bi051826m

DO - 10.1021/bi051826m

M3 - Article

VL - 45

SP - 7202

EP - 7216

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 23

ER -