TY - JOUR
T1 - The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar
AU - Ray, Sutapa
AU - Ju, Xiaoxi
AU - Sun, Hong
AU - Finnerty, Celeste C.
AU - Herndon, David N.
AU - Brasier, Allan R.
N1 - Funding Information:
This work was supported by National Heart Lung and Blood Institute R01 HL070925 (to ARB) and a Clinical and Translational Science Award (UL1RR029876 to ARB). This study was supported by grants from the National Institute for Disabilities and Rehabilitation Research (H133A070026 and H133A70019) (DNH), the National Institutes of Health (P50-GM60338, R01-HD049471, and T32-GM8256) (DNH), the Shriners Hospitals for Children (84080 to DNH; 8740 and 71001 to CCF), and the Wound Healing Society Foundation (CCF). CCF is an ITS Career Development Scholar supported, in part, by NIH KL2RR029875 and NIH UL1RR029876. This study is registered at clinicaltrials.gov, NCT00675714.
PY - 2013/5
Y1 - 2013/5
N2 - The molecular mechanisms behind the pathogenesis of postburn hypertrophic scar (HS) remain unclear. Here, we investigate the role of the IL-6 trans-signaling-signal transducer and activator of transcription (STAT)3 pathway in HS fibroblasts (HSFs) derived from post-burn HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation compared with normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSFs and showed increased STAT3 binding on its promoter relative to NFs in a chromatin immunoprecipitation assay. We observed that the cell-surface signaling transducer glycoprotein 130 is upregulated in HSFs by quantitative real-time reverse-transcriptase-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN), was seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSFs indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl, and c-Myc were also upregulated in HSF, and knockdown of STAT3 by small interfering RNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6 trans-signaling-STAT3 pathway may have an integral role in HS pathogenesis, and disruption of this pathway could be a potential therapeutic strategy for the treatment of post-burn HS.
AB - The molecular mechanisms behind the pathogenesis of postburn hypertrophic scar (HS) remain unclear. Here, we investigate the role of the IL-6 trans-signaling-signal transducer and activator of transcription (STAT)3 pathway in HS fibroblasts (HSFs) derived from post-burn HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation compared with normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSFs and showed increased STAT3 binding on its promoter relative to NFs in a chromatin immunoprecipitation assay. We observed that the cell-surface signaling transducer glycoprotein 130 is upregulated in HSFs by quantitative real-time reverse-transcriptase-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN), was seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSFs indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl, and c-Myc were also upregulated in HSF, and knockdown of STAT3 by small interfering RNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6 trans-signaling-STAT3 pathway may have an integral role in HS pathogenesis, and disruption of this pathway could be a potential therapeutic strategy for the treatment of post-burn HS.
UR - http://www.scopus.com/inward/record.url?scp=84876680937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876680937&partnerID=8YFLogxK
U2 - 10.1038/jid.2012.499
DO - 10.1038/jid.2012.499
M3 - Article
C2 - 23303450
AN - SCOPUS:84876680937
SN - 0022-202X
VL - 133
SP - 1212
EP - 1220
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 5
ER -