The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence

Tomasz Olszak, Mikhail M. Shneider, Agnieszka Latka, Barbara Maciejewska, Christopher Browning, Lada V. Sycheva, Anneleen Cornelissen, Katarzyna Danis-Wlodarczyk, Sofya N. Senchenkova, Alexander S. Shashkov, Grzegorz Gula, Michal Arabski, Slawomir Wasik, Konstantin A. Miroshnikov, Rob Lavigne, Petr G. Leiman, Yuriy A. Knirel, Zuzanna Drulis-Kawa

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Pseudomonas phage LKA1 of the subfamily Autographivirinae encodes a tailspike protein (LKA1gp49) which binds and cleaves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1. The crystal structure of LKA1gp49 catalytic domain consists of a beta-helix, an insertion domain and a C-terminal discoidin-like domain. The putative substrate binding and processing site is located on the face of the beta-helix whereas the C-terminal domain is likely involved in carbohydrates binding. NMR spectroscopy and mass spectrometry analyses of degraded LPS (OSA) fragments show an O5 serotype-specific polysaccharide lyase specificity. LKA1gp49 reduces virulence in an in vivo Galleria mellonella infection model and sensitizes P. aeruginosa to serum complement activity. This enzyme causes biofilm degradation and does not affect the activity of ciprofloxacin and gentamicin. This is the first comprehensive report on LPS-degrading lyase derived from a Pseudomonas phage. Biological properties reveal a potential towards its applications in antimicrobial design and as a microbiological or biotechnological tool.

Original languageEnglish (US)
Article number16302
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence'. Together they form a unique fingerprint.

Cite this