TY - JOUR
T1 - The pool of fatty acids covalently bound to platelet proteins by thioester linkages can be altered by exogenously supplied fatty acids
AU - Muszbek, Laszlo
AU - Haramura, Gizella
AU - Cluette-Brown, Joanne E.
AU - Van Cott, Elizabeth M.
AU - Laposata, Michael
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1999
Y1 - 1999
N2 - The goals of this investigation were, first, to develop a chemical strategy to identify and quantitate the mass of fatty acid which is covalently bound to proteins by thioester linkage in unactivated platelets, and, second, to determine whether exogeneously added fatty acids can alter the fatty acid composition of thioester bound fatty acids. Studies with radiolabeled fatty acids cannot identify and quantitate the actual fatty acids bound to proteins because they permit analysis of only the radiolabeled fatty acids added and their metabolites. Therefore, in the absence of metabolic labeling by radiolabeled fatty acids, we isolated the thioester- linked fatty acids from platelet proteins using hydroxylamine at neutral pH to form fatty acid hydroxamates. The hydroxamates were subsequently converted to fatty acid methyl esters by acid methanolysis for quantitation by gas chromatography-mass spectrometry. Using platelet specimens from 14 subjects, 74% of the fatty acid recovered from the unactivated platelet proteins as thioester linked was palmitate. Importantly, however, 22% was stearic acid, and oleate was 4% of the total thioester bound fatty acid. There was minimal variability (2.6-fold at maximum) between the subjects in the amount of the thioester-linked palmitate and thioester-linked stearate. However, there was substantial variability (>100-fold at maximum) between subjects in the amount of thioester-linked oleate. We also demonstrated that incubation of platelets with exogenous fatty acids can alter the profile of fatty acids bound to platelet proteins by thioester linkages. Incubation of platelets with 100 μM palmitate for 3 h increased the amount of thioester-linked palmitate by up to 26%, and incubation of platelets with 100 μM stearate increased the amount of thioester-linked stearate up to 30%. In support of the observation that radiolabeled fatty acids other than palmitate were shown to be capable of binding to platelet proteins by thioester linkage, our results indicate that the fatty acids actually bound to unactivated platelet proteins include a significant amount of stearate, and variable amounts of oleate, as well as palmitate. In addition, the data show that palmitate and stearate can be increased, as a percentage of total protein-bound fatty acid, by incubation with exogenous palmitate and stearate, respectively.
AB - The goals of this investigation were, first, to develop a chemical strategy to identify and quantitate the mass of fatty acid which is covalently bound to proteins by thioester linkage in unactivated platelets, and, second, to determine whether exogeneously added fatty acids can alter the fatty acid composition of thioester bound fatty acids. Studies with radiolabeled fatty acids cannot identify and quantitate the actual fatty acids bound to proteins because they permit analysis of only the radiolabeled fatty acids added and their metabolites. Therefore, in the absence of metabolic labeling by radiolabeled fatty acids, we isolated the thioester- linked fatty acids from platelet proteins using hydroxylamine at neutral pH to form fatty acid hydroxamates. The hydroxamates were subsequently converted to fatty acid methyl esters by acid methanolysis for quantitation by gas chromatography-mass spectrometry. Using platelet specimens from 14 subjects, 74% of the fatty acid recovered from the unactivated platelet proteins as thioester linked was palmitate. Importantly, however, 22% was stearic acid, and oleate was 4% of the total thioester bound fatty acid. There was minimal variability (2.6-fold at maximum) between the subjects in the amount of the thioester-linked palmitate and thioester-linked stearate. However, there was substantial variability (>100-fold at maximum) between subjects in the amount of thioester-linked oleate. We also demonstrated that incubation of platelets with exogenous fatty acids can alter the profile of fatty acids bound to platelet proteins by thioester linkages. Incubation of platelets with 100 μM palmitate for 3 h increased the amount of thioester-linked palmitate by up to 26%, and incubation of platelets with 100 μM stearate increased the amount of thioester-linked stearate up to 30%. In support of the observation that radiolabeled fatty acids other than palmitate were shown to be capable of binding to platelet proteins by thioester linkage, our results indicate that the fatty acids actually bound to unactivated platelet proteins include a significant amount of stearate, and variable amounts of oleate, as well as palmitate. In addition, the data show that palmitate and stearate can be increased, as a percentage of total protein-bound fatty acid, by incubation with exogenous palmitate and stearate, respectively.
UR - http://www.scopus.com/inward/record.url?scp=0033042833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033042833&partnerID=8YFLogxK
U2 - 10.1007/bf02562334
DO - 10.1007/bf02562334
M3 - Article
C2 - 10419194
AN - SCOPUS:0033042833
SN - 0024-4201
VL - 34
SP - S331-S337
JO - Lipids
JF - Lipids
IS - 1
ER -