TY - JOUR
T1 - The ribosome termination complex remodels release factor RF3 and ejects GDP
AU - Li, Li
AU - Rybak, Mariia Yu
AU - Lin, Jinzhong
AU - Gagnon, Matthieu G.
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2024.
PY - 2024
Y1 - 2024
N2 - Translation termination involves release factors RF1, RF2 and the GTPase RF3 that recycles RF1 and RF2 from the ribosome. RF3 dissociates from the ribosome in the GDP-bound form and must then exchange GDP for GTP. The 70S ribosome termination complex (70S-TC) accelerates GDP exchange in RF3, suggesting that the 70S-TC can function as the guanine nucleotide exchange factor for RF3. Here, we use cryogenic-electron microscopy to elucidate the mechanism of GDP dissociation from RF3 catalyzed by the Escherichia coli 70S-TC. The non-rotated ribosome bound to RF1 remodels RF3 and induces a peptide flip in the phosphate-binding loop, efficiently ejecting GDP. Binding of GTP allows RF3 to dock at the GTPase center, promoting the dissociation of RF1 from the ribosome. The structures recapitulate the functional cycle of RF3 on the ribosome and uncover the mechanism by which the 70S-TC allosterically dismantles the phosphate-binding groove in RF3, a previously overlooked function of the ribosome.
AB - Translation termination involves release factors RF1, RF2 and the GTPase RF3 that recycles RF1 and RF2 from the ribosome. RF3 dissociates from the ribosome in the GDP-bound form and must then exchange GDP for GTP. The 70S ribosome termination complex (70S-TC) accelerates GDP exchange in RF3, suggesting that the 70S-TC can function as the guanine nucleotide exchange factor for RF3. Here, we use cryogenic-electron microscopy to elucidate the mechanism of GDP dissociation from RF3 catalyzed by the Escherichia coli 70S-TC. The non-rotated ribosome bound to RF1 remodels RF3 and induces a peptide flip in the phosphate-binding loop, efficiently ejecting GDP. Binding of GTP allows RF3 to dock at the GTPase center, promoting the dissociation of RF1 from the ribosome. The structures recapitulate the functional cycle of RF3 on the ribosome and uncover the mechanism by which the 70S-TC allosterically dismantles the phosphate-binding groove in RF3, a previously overlooked function of the ribosome.
UR - http://www.scopus.com/inward/record.url?scp=85198950143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198950143&partnerID=8YFLogxK
U2 - 10.1038/s41594-024-01360-0
DO - 10.1038/s41594-024-01360-0
M3 - Article
C2 - 39030416
AN - SCOPUS:85198950143
SN - 1545-9993
JO - Nature Structural and Molecular Biology
JF - Nature Structural and Molecular Biology
ER -