The role of glutathione s-transferases as a defense against reactive electrophiles in the blood vessel wall

Nong Gao He, Sanjay Awasthi, Sharad S. Singhal, Margaret B. Trent, Paul J. Boor

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

The glutathione transferases (GSTs) are a family of ubiquitous enzymes that catalyze the conjugation of reduced glutathione (GSH) with reactive electrophiles. Rat vascular tissue contains GST isoforms that represent a major cellular defense mechanism against atherogenic α,β-unsaturated aldehydes (Misra et al., Toxicol. Appl. Pharmacol. 133, 27-33, 1995). In this study we examined the role of GSTs in providing protection to cultured neonatal vascular smooth muscle cells (VSMCs) from the α,β-unsaturated carbonyl cardiovascular toxins, allylamine and its metabolite, acrolein. Confluent cultured cells were exposed to 2 to 10 μM allylamine (a cardiovascular toxin that is metabolized in vivo and in vitro by VSMCs to the reactive aldehyde, acrolein) or to acrolein (2-10 μM) for 48 h; dose- cytotoxicity curves were generated utilizing a tetrazolium-dependent cytotoxicity assay. Concommittant treatment with sulfasalazine, an established inhibitor of GST, was found to markedly increase allylamine- or acrolein-induced cytotoxicity, decreasing the LC50 by two- to threefold at 50 to 100 μM sulfasalazine. A clonogenic survival assay in VSMCs exposed to these compounds for 4 h confirmed lethal toxicity and enhanced toxicity following cotreatment with sulfasalazine. Isobologram analysis (which statistically defines the limits of additivity of two independent treatments) showed that the sulfasalazine effect on both allylame and acrolein cytotoxicity was supraadditive, or synergistic. Sulfasalazine was not cytotoxic to VSMCs in the range of concentrations that augmented acrolein or allylamine cytoxicity; total GST activity was inhibited, however, in a dose- dependent manner in that range. GST purified by GSH-affinity chromatography from pelleted untreated cells gave specific activities and kinetic constants consistent with those previously reported for rat aorta total GSTs. The catalytic efficiency (K(cat)/V(m)) was found to be much greater for 4- hydroxy-2-nonenal than for 1-chloro-2,4-dinitrobenzene (0.058 vs 0.4 s-1 mM-1). Western blot of purified total GSTs using antibodies against rec- mGSTA4-4 revealed a single band at 25 kDa, confirming the presence of a GST isozyme immunologically similar to rat GST8-8, which is known to utilize α,β-unsaturated carbonyls as preferred substrates. Our data indicate that GSTs are an important defense in the vascular media, protecting blood vessels against α,β-unsaturated carbonyl cardiovascular toxins that are involved in initiating atherosclerotic lesions.

Original languageEnglish (US)
Pages (from-to)83-89
Number of pages7
JournalToxicology and Applied Pharmacology
Volume152
Issue number1
DOIs
StatePublished - Sep 1998

Fingerprint

Acrolein
Blood vessels
Sulfasalazine
Transferases
Glutathione Transferase
Allylamine
Glutathione
Blood Vessels
Cytotoxicity
Vascular Smooth Muscle
Smooth Muscle Myocytes
Muscle
Rats
Aldehydes
Toxicity
Assays
Cells
Tunica Media
Affinity chromatography
Dinitrochlorobenzene

ASJC Scopus subject areas

  • Pharmacology
  • Toxicology

Cite this

The role of glutathione s-transferases as a defense against reactive electrophiles in the blood vessel wall. / He, Nong Gao; Awasthi, Sanjay; Singhal, Sharad S.; Trent, Margaret B.; Boor, Paul J.

In: Toxicology and Applied Pharmacology, Vol. 152, No. 1, 09.1998, p. 83-89.

Research output: Contribution to journalArticle

He, Nong Gao ; Awasthi, Sanjay ; Singhal, Sharad S. ; Trent, Margaret B. ; Boor, Paul J. / The role of glutathione s-transferases as a defense against reactive electrophiles in the blood vessel wall. In: Toxicology and Applied Pharmacology. 1998 ; Vol. 152, No. 1. pp. 83-89.
@article{00f370b3376d4bcead6b2ae2180159ec,
title = "The role of glutathione s-transferases as a defense against reactive electrophiles in the blood vessel wall",
abstract = "The glutathione transferases (GSTs) are a family of ubiquitous enzymes that catalyze the conjugation of reduced glutathione (GSH) with reactive electrophiles. Rat vascular tissue contains GST isoforms that represent a major cellular defense mechanism against atherogenic α,β-unsaturated aldehydes (Misra et al., Toxicol. Appl. Pharmacol. 133, 27-33, 1995). In this study we examined the role of GSTs in providing protection to cultured neonatal vascular smooth muscle cells (VSMCs) from the α,β-unsaturated carbonyl cardiovascular toxins, allylamine and its metabolite, acrolein. Confluent cultured cells were exposed to 2 to 10 μM allylamine (a cardiovascular toxin that is metabolized in vivo and in vitro by VSMCs to the reactive aldehyde, acrolein) or to acrolein (2-10 μM) for 48 h; dose- cytotoxicity curves were generated utilizing a tetrazolium-dependent cytotoxicity assay. Concommittant treatment with sulfasalazine, an established inhibitor of GST, was found to markedly increase allylamine- or acrolein-induced cytotoxicity, decreasing the LC50 by two- to threefold at 50 to 100 μM sulfasalazine. A clonogenic survival assay in VSMCs exposed to these compounds for 4 h confirmed lethal toxicity and enhanced toxicity following cotreatment with sulfasalazine. Isobologram analysis (which statistically defines the limits of additivity of two independent treatments) showed that the sulfasalazine effect on both allylame and acrolein cytotoxicity was supraadditive, or synergistic. Sulfasalazine was not cytotoxic to VSMCs in the range of concentrations that augmented acrolein or allylamine cytoxicity; total GST activity was inhibited, however, in a dose- dependent manner in that range. GST purified by GSH-affinity chromatography from pelleted untreated cells gave specific activities and kinetic constants consistent with those previously reported for rat aorta total GSTs. The catalytic efficiency (K(cat)/V(m)) was found to be much greater for 4- hydroxy-2-nonenal than for 1-chloro-2,4-dinitrobenzene (0.058 vs 0.4 s-1 mM-1). Western blot of purified total GSTs using antibodies against rec- mGSTA4-4 revealed a single band at 25 kDa, confirming the presence of a GST isozyme immunologically similar to rat GST8-8, which is known to utilize α,β-unsaturated carbonyls as preferred substrates. Our data indicate that GSTs are an important defense in the vascular media, protecting blood vessels against α,β-unsaturated carbonyl cardiovascular toxins that are involved in initiating atherosclerotic lesions.",
author = "He, {Nong Gao} and Sanjay Awasthi and Singhal, {Sharad S.} and Trent, {Margaret B.} and Boor, {Paul J.}",
year = "1998",
month = "9",
doi = "10.1006/taap.1998.8511",
language = "English (US)",
volume = "152",
pages = "83--89",
journal = "Toxicology and Applied Pharmacology",
issn = "0041-008X",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - The role of glutathione s-transferases as a defense against reactive electrophiles in the blood vessel wall

AU - He, Nong Gao

AU - Awasthi, Sanjay

AU - Singhal, Sharad S.

AU - Trent, Margaret B.

AU - Boor, Paul J.

PY - 1998/9

Y1 - 1998/9

N2 - The glutathione transferases (GSTs) are a family of ubiquitous enzymes that catalyze the conjugation of reduced glutathione (GSH) with reactive electrophiles. Rat vascular tissue contains GST isoforms that represent a major cellular defense mechanism against atherogenic α,β-unsaturated aldehydes (Misra et al., Toxicol. Appl. Pharmacol. 133, 27-33, 1995). In this study we examined the role of GSTs in providing protection to cultured neonatal vascular smooth muscle cells (VSMCs) from the α,β-unsaturated carbonyl cardiovascular toxins, allylamine and its metabolite, acrolein. Confluent cultured cells were exposed to 2 to 10 μM allylamine (a cardiovascular toxin that is metabolized in vivo and in vitro by VSMCs to the reactive aldehyde, acrolein) or to acrolein (2-10 μM) for 48 h; dose- cytotoxicity curves were generated utilizing a tetrazolium-dependent cytotoxicity assay. Concommittant treatment with sulfasalazine, an established inhibitor of GST, was found to markedly increase allylamine- or acrolein-induced cytotoxicity, decreasing the LC50 by two- to threefold at 50 to 100 μM sulfasalazine. A clonogenic survival assay in VSMCs exposed to these compounds for 4 h confirmed lethal toxicity and enhanced toxicity following cotreatment with sulfasalazine. Isobologram analysis (which statistically defines the limits of additivity of two independent treatments) showed that the sulfasalazine effect on both allylame and acrolein cytotoxicity was supraadditive, or synergistic. Sulfasalazine was not cytotoxic to VSMCs in the range of concentrations that augmented acrolein or allylamine cytoxicity; total GST activity was inhibited, however, in a dose- dependent manner in that range. GST purified by GSH-affinity chromatography from pelleted untreated cells gave specific activities and kinetic constants consistent with those previously reported for rat aorta total GSTs. The catalytic efficiency (K(cat)/V(m)) was found to be much greater for 4- hydroxy-2-nonenal than for 1-chloro-2,4-dinitrobenzene (0.058 vs 0.4 s-1 mM-1). Western blot of purified total GSTs using antibodies against rec- mGSTA4-4 revealed a single band at 25 kDa, confirming the presence of a GST isozyme immunologically similar to rat GST8-8, which is known to utilize α,β-unsaturated carbonyls as preferred substrates. Our data indicate that GSTs are an important defense in the vascular media, protecting blood vessels against α,β-unsaturated carbonyl cardiovascular toxins that are involved in initiating atherosclerotic lesions.

AB - The glutathione transferases (GSTs) are a family of ubiquitous enzymes that catalyze the conjugation of reduced glutathione (GSH) with reactive electrophiles. Rat vascular tissue contains GST isoforms that represent a major cellular defense mechanism against atherogenic α,β-unsaturated aldehydes (Misra et al., Toxicol. Appl. Pharmacol. 133, 27-33, 1995). In this study we examined the role of GSTs in providing protection to cultured neonatal vascular smooth muscle cells (VSMCs) from the α,β-unsaturated carbonyl cardiovascular toxins, allylamine and its metabolite, acrolein. Confluent cultured cells were exposed to 2 to 10 μM allylamine (a cardiovascular toxin that is metabolized in vivo and in vitro by VSMCs to the reactive aldehyde, acrolein) or to acrolein (2-10 μM) for 48 h; dose- cytotoxicity curves were generated utilizing a tetrazolium-dependent cytotoxicity assay. Concommittant treatment with sulfasalazine, an established inhibitor of GST, was found to markedly increase allylamine- or acrolein-induced cytotoxicity, decreasing the LC50 by two- to threefold at 50 to 100 μM sulfasalazine. A clonogenic survival assay in VSMCs exposed to these compounds for 4 h confirmed lethal toxicity and enhanced toxicity following cotreatment with sulfasalazine. Isobologram analysis (which statistically defines the limits of additivity of two independent treatments) showed that the sulfasalazine effect on both allylame and acrolein cytotoxicity was supraadditive, or synergistic. Sulfasalazine was not cytotoxic to VSMCs in the range of concentrations that augmented acrolein or allylamine cytoxicity; total GST activity was inhibited, however, in a dose- dependent manner in that range. GST purified by GSH-affinity chromatography from pelleted untreated cells gave specific activities and kinetic constants consistent with those previously reported for rat aorta total GSTs. The catalytic efficiency (K(cat)/V(m)) was found to be much greater for 4- hydroxy-2-nonenal than for 1-chloro-2,4-dinitrobenzene (0.058 vs 0.4 s-1 mM-1). Western blot of purified total GSTs using antibodies against rec- mGSTA4-4 revealed a single band at 25 kDa, confirming the presence of a GST isozyme immunologically similar to rat GST8-8, which is known to utilize α,β-unsaturated carbonyls as preferred substrates. Our data indicate that GSTs are an important defense in the vascular media, protecting blood vessels against α,β-unsaturated carbonyl cardiovascular toxins that are involved in initiating atherosclerotic lesions.

UR - http://www.scopus.com/inward/record.url?scp=0007996162&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0007996162&partnerID=8YFLogxK

U2 - 10.1006/taap.1998.8511

DO - 10.1006/taap.1998.8511

M3 - Article

VL - 152

SP - 83

EP - 89

JO - Toxicology and Applied Pharmacology

JF - Toxicology and Applied Pharmacology

SN - 0041-008X

IS - 1

ER -