The role of inflammation in brain cancer

James L. Sowers, Kenneth M. Johnson, Charles Conrad, Joel T. Patterson, Lawrence C. Sowers

Research output: Chapter in Book/Report/Conference proceedingChapter

19 Scopus citations

Abstract

Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding in glioma cell lines and patient samples, suggesting a common defect in epigenetic reprogramming. Within the tumor microenvironment, infiltrating immune cells increase oxidative DNA damage, likely promoting both genetic and epigenetic changes that occur during glioma evolution. In this environment, glioma cells are selected that utilize multiple metabolic changes, including changes in the metabolism of the amino acids glutamate, tryptophan, and arginine. Whereas altered metabolism can promote the destruction of normal tissues, glioma cells exploit these changes to promote tumor cell survival and to suppress adaptive immune responses. Further understanding of these metabolic changes could reveal new strategies that would selectively disadvantage tumor cells and redirect host antitumor responses toward eradication of these lethal tumors.

Original languageEnglish (US)
Title of host publicationAdvances in Experimental Medicine and Biology
Pages75-105
Number of pages31
DOIs
StatePublished - 2014

Publication series

NameAdvances in Experimental Medicine and Biology
Volume816
ISSN (Print)0065-2598
ISSN (Electronic)2214-8019

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'The role of inflammation in brain cancer'. Together they form a unique fingerprint.

Cite this