TY - JOUR
T1 - The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes
AU - Pacher, Pal
AU - Liaudet, Lucas
AU - Soriano, Francisco Garcia
AU - Mabley, Jon G.
AU - Szabó, Éva
AU - Szabó, Csaba
PY - 2002
Y1 - 2002
N2 - Patients with diabetes exhibit a high incidence of diabetic cardiomyopathy and vascular complications, which underlie the development of retinopathy, nephropathy, and neuropathy and increase the risk of hypertension, stroke, and myocardial infarction. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the development of endothelial dysfunction in a streptozotocin-induced model of diabetes. We investigated the role of PARP activation in the pathogenesis of cardiac dysfunction in streptozotocin-induced and genetic (nonobese diabetic) models of diabetes in rats and mice. Development of diabetes was accompanied by hyperglycemia, cardiac PARP activation, a selective loss of endothelium-dependent vasodilation in the thoracic aorta, and an early diastolic dysfunction of the heart. Treatment with a novel potent phenanthridinonebased PARP inhibitor, PJ34, starting 1 week after the onset of diabetes, restored normal vascular responsiveness and significantly improved cardiac dysfunction, despite the persistence of severe hyperglycemia. The beneficial effect of PARP inhibition persisted even after several weeks of discontinuation of the treatment. Thus, PARP activation plays a central role in the pathogenesis of diabetic cardiovascular (cardiac as well as endothelial) dysfunction. PARP inhibitors may exert beneficial effects against the development of cardiovascular complications in diabetes.
AB - Patients with diabetes exhibit a high incidence of diabetic cardiomyopathy and vascular complications, which underlie the development of retinopathy, nephropathy, and neuropathy and increase the risk of hypertension, stroke, and myocardial infarction. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the development of endothelial dysfunction in a streptozotocin-induced model of diabetes. We investigated the role of PARP activation in the pathogenesis of cardiac dysfunction in streptozotocin-induced and genetic (nonobese diabetic) models of diabetes in rats and mice. Development of diabetes was accompanied by hyperglycemia, cardiac PARP activation, a selective loss of endothelium-dependent vasodilation in the thoracic aorta, and an early diastolic dysfunction of the heart. Treatment with a novel potent phenanthridinonebased PARP inhibitor, PJ34, starting 1 week after the onset of diabetes, restored normal vascular responsiveness and significantly improved cardiac dysfunction, despite the persistence of severe hyperglycemia. The beneficial effect of PARP inhibition persisted even after several weeks of discontinuation of the treatment. Thus, PARP activation plays a central role in the pathogenesis of diabetic cardiovascular (cardiac as well as endothelial) dysfunction. PARP inhibitors may exert beneficial effects against the development of cardiovascular complications in diabetes.
UR - http://www.scopus.com/inward/record.url?scp=0036064154&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036064154&partnerID=8YFLogxK
U2 - 10.2337/diabetes.51.2.514
DO - 10.2337/diabetes.51.2.514
M3 - Article
C2 - 11812763
AN - SCOPUS:0036064154
SN - 0012-1797
VL - 51
SP - 514
EP - 521
JO - Diabetes
JF - Diabetes
IS - 2
ER -