TY - JOUR
T1 - The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation
AU - Da-Silva, Wagner S.
AU - Harney, John W.
AU - Kim, Brian W.
AU - Li, Jing
AU - Bianco, Suzy D.C.
AU - Crescenzi, Alessandra
AU - Christoffolete, Marcelo A.
AU - Huang, Stephen A.
AU - Bianco, Antonio C.
PY - 2007/3
Y1 - 2007/3
N2 - Disturbances in energy homeostasis can result in obesity and other metabolic diseases. Here we report a metabolic pathway present in normal human skeletal muscle myoblasts that is activated by the small polyphenolic molecule kaempferol (KPF). Treatment with KPF leads to an ∼30% increase in skeletal myocyte oxygen consumption. The mechanism involves a several-fold increase in cyclic AMP (cAMP) generation and protein kinase A activation, and the effect of KPF can be mimicked via treatment with dibutyryl cAMP. Microarray and real-time PCR studies identified a set of metabolically relevant genes influenced by KPF including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyl transferase-1, mitochondrial transcription factor 1, citrate synthase, and uncoupling protein-3, although KPF itself is not a direct mitochondrial uncoupler. The cAMP-responsive gene for type 2 iodothyronine deiodinase (D2), an intracellular enzyme that activates thyroid hormone (T3) for the nucleus, is approximately threefold upregulated by KPF; furthermore, the activity half-life for D2 is dramatically and selectively increased as well. The net effect is an ∼10-fold stimulation of D2 activity as measured in cell sonicates, with a concurrent increase of ∼2.6-fold in the rate of T3 production, which persists even 24 h after KPF has been removed from the system. The effects of KPF on D2 are independent of sirtuin activation and only weakly reproduced by other small polyphenolic molecules such as quercetin and fisetin. These data document a novel mechanism by which a xenobiotic-activated pathway can regulate metabolically important genes as well as thyroid hormone activation and thus may influence metabolic control in humans.
AB - Disturbances in energy homeostasis can result in obesity and other metabolic diseases. Here we report a metabolic pathway present in normal human skeletal muscle myoblasts that is activated by the small polyphenolic molecule kaempferol (KPF). Treatment with KPF leads to an ∼30% increase in skeletal myocyte oxygen consumption. The mechanism involves a several-fold increase in cyclic AMP (cAMP) generation and protein kinase A activation, and the effect of KPF can be mimicked via treatment with dibutyryl cAMP. Microarray and real-time PCR studies identified a set of metabolically relevant genes influenced by KPF including peroxisome proliferator-activated receptor γ coactivator-1α, carnitine palmitoyl transferase-1, mitochondrial transcription factor 1, citrate synthase, and uncoupling protein-3, although KPF itself is not a direct mitochondrial uncoupler. The cAMP-responsive gene for type 2 iodothyronine deiodinase (D2), an intracellular enzyme that activates thyroid hormone (T3) for the nucleus, is approximately threefold upregulated by KPF; furthermore, the activity half-life for D2 is dramatically and selectively increased as well. The net effect is an ∼10-fold stimulation of D2 activity as measured in cell sonicates, with a concurrent increase of ∼2.6-fold in the rate of T3 production, which persists even 24 h after KPF has been removed from the system. The effects of KPF on D2 are independent of sirtuin activation and only weakly reproduced by other small polyphenolic molecules such as quercetin and fisetin. These data document a novel mechanism by which a xenobiotic-activated pathway can regulate metabolically important genes as well as thyroid hormone activation and thus may influence metabolic control in humans.
UR - http://www.scopus.com/inward/record.url?scp=33847388961&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847388961&partnerID=8YFLogxK
U2 - 10.2337/db06-1488
DO - 10.2337/db06-1488
M3 - Article
C2 - 17327447
AN - SCOPUS:33847388961
SN - 0012-1797
VL - 56
SP - 767
EP - 776
JO - Diabetes
JF - Diabetes
IS - 3
ER -