TY - JOUR
T1 - The use of functionally deficient viral vectors as visualization tools to reveal complementation patterns between plant viruses and the silencing suppressor p19
AU - Zhou, Yiyang
AU - Ghidey, Meron R.
AU - Pruett, Grace
AU - Kearney, Christopher M.
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12
Y1 - 2020/12
N2 - Plant virus transport complementation is classically observed as a helper virus allowing another virus to regain cell-to-cell or systemic movement through a restrictive host plant (Malyshenko et al., 1989). The complementation effect is usually studied by observing virus infection after co-infection or super-inoculation of the helper virus. We herein demonstrate the utility of functionally deficient viral vectors as tools to determine the contribution of individual viral genes to plant viral transport complementation. Two functionally deficient viral vectors were engineered that derive from foxtail mosaic potexvirus and sunn-hemp mosaic tobamovirus, namely FECT (FoMV Eliminate CP and TGB, (Liu and Kearney, 2010)) and SHEC (SHMV Eliminate CP gene, (Liu and Kearney, 2010)), respectively. FECT had all the ORFs removed except for the replicase and thus is defective for both long-distance and cell-to-cell movement. SHEC lacked only the coat protein ORF and retained the movement protein (MP) and is functional for cell-to-cell movement. When FECT and SHEC vectors were inoculated with the silencing suppressor p19 in different zones of the same leaf, FECT was enabled to express its reporter gene beyond the original inoculation zone. When FECT, SHEC, and p19 were individually inoculated in separate zones, both FECT and SHEC reporter gene expression was observed within the p19 zone, distant from the original virus inoculation points. These observations indicate that SHEC movement protein could create a trafficking network to allow viral RNAs of FECT and SHEC and p19/p19 transcript to move from cell to cell. This system provides a tool to visually monitor the movement of viruses and silencing suppressors as well as to identify the effects of individual viral components on virus movement.
AB - Plant virus transport complementation is classically observed as a helper virus allowing another virus to regain cell-to-cell or systemic movement through a restrictive host plant (Malyshenko et al., 1989). The complementation effect is usually studied by observing virus infection after co-infection or super-inoculation of the helper virus. We herein demonstrate the utility of functionally deficient viral vectors as tools to determine the contribution of individual viral genes to plant viral transport complementation. Two functionally deficient viral vectors were engineered that derive from foxtail mosaic potexvirus and sunn-hemp mosaic tobamovirus, namely FECT (FoMV Eliminate CP and TGB, (Liu and Kearney, 2010)) and SHEC (SHMV Eliminate CP gene, (Liu and Kearney, 2010)), respectively. FECT had all the ORFs removed except for the replicase and thus is defective for both long-distance and cell-to-cell movement. SHEC lacked only the coat protein ORF and retained the movement protein (MP) and is functional for cell-to-cell movement. When FECT and SHEC vectors were inoculated with the silencing suppressor p19 in different zones of the same leaf, FECT was enabled to express its reporter gene beyond the original inoculation zone. When FECT, SHEC, and p19 were individually inoculated in separate zones, both FECT and SHEC reporter gene expression was observed within the p19 zone, distant from the original virus inoculation points. These observations indicate that SHEC movement protein could create a trafficking network to allow viral RNAs of FECT and SHEC and p19/p19 transcript to move from cell to cell. This system provides a tool to visually monitor the movement of viruses and silencing suppressors as well as to identify the effects of individual viral components on virus movement.
KW - Potexvirus
KW - Tobamovirus
KW - Virus complementation
KW - Virus movement
KW - p19 silencing suppressor
UR - http://www.scopus.com/inward/record.url?scp=85092167100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092167100&partnerID=8YFLogxK
U2 - 10.1016/j.jviromet.2020.113980
DO - 10.1016/j.jviromet.2020.113980
M3 - Article
C2 - 33010375
AN - SCOPUS:85092167100
SN - 0166-0934
VL - 286
JO - Journal of Virological Methods
JF - Journal of Virological Methods
M1 - 113980
ER -