The virally encoded killer proteins from Ustilago maydis

Aron Allen, Emir Islamovic, Jagdeep Kaur, Scott Gold, Dilip Shah, Thomas Smith

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in that these viruses are dependent upon host survival and, to that end, produce antifungal proteins that kill competing, uninfected strains of U. maydis. Two of the best-studied examples of this killer phenomenon are U. maydis strains P4 and P6 that secrete killer proteins KP4 and KP6, respectively. The mature form of KP4 is comprised of 105 residues while KP6 consists of two subunits, a and b chains, 76 and 82 residues in length, respectively. KP6 is not homologous to any known protein, and only recently has KP4 been shown to have possible homologs in pathogenic fungi. While very little is known as to the mode of action of KP6, we have shown that KP4 blocks L-type Ca2+ channels in fungi and animal cells in a reversible and cytostatic manner. In contrast, preliminary results suggest that KP6 acts via a completely different mechanism and is a potent cytolytic antifungal protein. When KP4 is expressed in maize, the resulting transgenic lines are nearly immune to U. maydis infection. Therefore, a greater understanding of the modes of action of these potent antifungal proteins could lead to development of broad-spectrum antifungal agents.

Original languageEnglish (US)
Pages (from-to)166-173
Number of pages8
JournalFungal Biology Reviews
Volume26
Issue number4
DOIs
StatePublished - Jan 2013
Externally publishedYes

Fingerprint

Ustilago
Ustilago zeae
antifungal proteins
viruses
Totiviridae
mechanism of action
Proteins
proteins
smut diseases
Viruses
Totivirus
fungi
Zea mays
antifungal agents
corn
double-stranded RNA
Fungi
infection
symbiosis
Symbiosis

Keywords

  • Antifungal
  • Totivirus
  • Transgenic
  • Ustilago maydis

ASJC Scopus subject areas

  • Plant Science
  • Microbiology

Cite this

The virally encoded killer proteins from Ustilago maydis. / Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas.

In: Fungal Biology Reviews, Vol. 26, No. 4, 01.2013, p. 166-173.

Research output: Contribution to journalArticle

Allen, A, Islamovic, E, Kaur, J, Gold, S, Shah, D & Smith, T 2013, 'The virally encoded killer proteins from Ustilago maydis', Fungal Biology Reviews, vol. 26, no. 4, pp. 166-173. https://doi.org/10.1016/j.fbr.2012.10.001
Allen, Aron ; Islamovic, Emir ; Kaur, Jagdeep ; Gold, Scott ; Shah, Dilip ; Smith, Thomas. / The virally encoded killer proteins from Ustilago maydis. In: Fungal Biology Reviews. 2013 ; Vol. 26, No. 4. pp. 166-173.
@article{67a64db2a796420f9192fc798047cf28,
title = "The virally encoded killer proteins from Ustilago maydis",
abstract = "Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in that these viruses are dependent upon host survival and, to that end, produce antifungal proteins that kill competing, uninfected strains of U. maydis. Two of the best-studied examples of this killer phenomenon are U. maydis strains P4 and P6 that secrete killer proteins KP4 and KP6, respectively. The mature form of KP4 is comprised of 105 residues while KP6 consists of two subunits, a and b chains, 76 and 82 residues in length, respectively. KP6 is not homologous to any known protein, and only recently has KP4 been shown to have possible homologs in pathogenic fungi. While very little is known as to the mode of action of KP6, we have shown that KP4 blocks L-type Ca2+ channels in fungi and animal cells in a reversible and cytostatic manner. In contrast, preliminary results suggest that KP6 acts via a completely different mechanism and is a potent cytolytic antifungal protein. When KP4 is expressed in maize, the resulting transgenic lines are nearly immune to U. maydis infection. Therefore, a greater understanding of the modes of action of these potent antifungal proteins could lead to development of broad-spectrum antifungal agents.",
keywords = "Antifungal, Totivirus, Transgenic, Ustilago maydis",
author = "Aron Allen and Emir Islamovic and Jagdeep Kaur and Scott Gold and Dilip Shah and Thomas Smith",
year = "2013",
month = "1",
doi = "10.1016/j.fbr.2012.10.001",
language = "English (US)",
volume = "26",
pages = "166--173",
journal = "Fungal Biology Reviews",
issn = "1749-4613",
publisher = "Elsevier BV",
number = "4",

}

TY - JOUR

T1 - The virally encoded killer proteins from Ustilago maydis

AU - Allen, Aron

AU - Islamovic, Emir

AU - Kaur, Jagdeep

AU - Gold, Scott

AU - Shah, Dilip

AU - Smith, Thomas

PY - 2013/1

Y1 - 2013/1

N2 - Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in that these viruses are dependent upon host survival and, to that end, produce antifungal proteins that kill competing, uninfected strains of U. maydis. Two of the best-studied examples of this killer phenomenon are U. maydis strains P4 and P6 that secrete killer proteins KP4 and KP6, respectively. The mature form of KP4 is comprised of 105 residues while KP6 consists of two subunits, a and b chains, 76 and 82 residues in length, respectively. KP6 is not homologous to any known protein, and only recently has KP4 been shown to have possible homologs in pathogenic fungi. While very little is known as to the mode of action of KP6, we have shown that KP4 blocks L-type Ca2+ channels in fungi and animal cells in a reversible and cytostatic manner. In contrast, preliminary results suggest that KP6 acts via a completely different mechanism and is a potent cytolytic antifungal protein. When KP4 is expressed in maize, the resulting transgenic lines are nearly immune to U. maydis infection. Therefore, a greater understanding of the modes of action of these potent antifungal proteins could lead to development of broad-spectrum antifungal agents.

AB - Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in that these viruses are dependent upon host survival and, to that end, produce antifungal proteins that kill competing, uninfected strains of U. maydis. Two of the best-studied examples of this killer phenomenon are U. maydis strains P4 and P6 that secrete killer proteins KP4 and KP6, respectively. The mature form of KP4 is comprised of 105 residues while KP6 consists of two subunits, a and b chains, 76 and 82 residues in length, respectively. KP6 is not homologous to any known protein, and only recently has KP4 been shown to have possible homologs in pathogenic fungi. While very little is known as to the mode of action of KP6, we have shown that KP4 blocks L-type Ca2+ channels in fungi and animal cells in a reversible and cytostatic manner. In contrast, preliminary results suggest that KP6 acts via a completely different mechanism and is a potent cytolytic antifungal protein. When KP4 is expressed in maize, the resulting transgenic lines are nearly immune to U. maydis infection. Therefore, a greater understanding of the modes of action of these potent antifungal proteins could lead to development of broad-spectrum antifungal agents.

KW - Antifungal

KW - Totivirus

KW - Transgenic

KW - Ustilago maydis

UR - http://www.scopus.com/inward/record.url?scp=84872938355&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872938355&partnerID=8YFLogxK

U2 - 10.1016/j.fbr.2012.10.001

DO - 10.1016/j.fbr.2012.10.001

M3 - Article

VL - 26

SP - 166

EP - 173

JO - Fungal Biology Reviews

JF - Fungal Biology Reviews

SN - 1749-4613

IS - 4

ER -