TY - JOUR
T1 - Ticagrelor Improves Remodeling, Reduces Apoptosis, Inflammation and Fibrosis and Increases the Number of Progenitor Stem Cells After Myocardial Infarction in a Rat Model of Ischemia Reperfusion
AU - Birnbaum, Yochai
AU - Tran, Dat
AU - Chen, Huan
AU - Nylander, Sven
AU - Sampaio, Luiz C.
AU - Ye, Yumei
PY - 2019/1/1
Y1 - 2019/1/1
N2 - BACKGROUND/AIMS: We assessed the effects of ticagrelor, aspirin and prasugrel, started 7days after myocardial ischemia-reperfusion injury on remodeling, inflammation and fibrosis in the rat. We examined whether ticagrelor can affect the number of progenitor cells in the border zone. Ticagrelor, started 24h after myocardial ischemia-reperfusion injury, attenuates the decrease in heart function and adverse remodeling, an effect which is blocked by aspirin. METHODS: Rats underwent 40min ischemia followed by reperfusion. Oral dosing with vehicle, ticagrelor (300mg/kg/d), aspirin (20mg/kg/d), their combination or prasugrel (15mg/kg/d) started 7days after infarction. Echocardiography was used to assess systolic function. Heart tissue were analyzed by rt-PCR, immunoblotting, ELISA and immunohistochemistry 2weeks after infarction. RESULTS: Both ticagrelor and aspirin attenuated the decrease in systolic function and remodeling, an effect that was blocked by their combination. Ticagrelor and aspirin attenuated the increase in ANP, BNP, collagen-I and collagen-III. Again, the effect was blocked by their combination. Ticagrelor increased c-Kit, Sca-1, Ki-67, CD34, attenuated the decrease in CD105 mRNA levels, and attenuated the increase in CD31, whereas aspirin increased Ki-67, suppressed the increase in CD31 and attenuated the decrease in CD105 mRNA levels. Prasugrel did not display any effects. CONCLUSION: Ticagrelor attenuated adverse remodeling and deterioration of left ventricular systolic function despite starting treatment after the myocardial ischemia-reperfusion injury is completed. Aspirin had similar effects; however, when combined with ticagrelor, the protective effects were significantly attenuated. Ticagrelor increased the levels of several markers of stem cells and regeneration, suggesting cardiac healing by recruiting regenerative cells into the infarct.
AB - BACKGROUND/AIMS: We assessed the effects of ticagrelor, aspirin and prasugrel, started 7days after myocardial ischemia-reperfusion injury on remodeling, inflammation and fibrosis in the rat. We examined whether ticagrelor can affect the number of progenitor cells in the border zone. Ticagrelor, started 24h after myocardial ischemia-reperfusion injury, attenuates the decrease in heart function and adverse remodeling, an effect which is blocked by aspirin. METHODS: Rats underwent 40min ischemia followed by reperfusion. Oral dosing with vehicle, ticagrelor (300mg/kg/d), aspirin (20mg/kg/d), their combination or prasugrel (15mg/kg/d) started 7days after infarction. Echocardiography was used to assess systolic function. Heart tissue were analyzed by rt-PCR, immunoblotting, ELISA and immunohistochemistry 2weeks after infarction. RESULTS: Both ticagrelor and aspirin attenuated the decrease in systolic function and remodeling, an effect that was blocked by their combination. Ticagrelor and aspirin attenuated the increase in ANP, BNP, collagen-I and collagen-III. Again, the effect was blocked by their combination. Ticagrelor increased c-Kit, Sca-1, Ki-67, CD34, attenuated the decrease in CD105 mRNA levels, and attenuated the increase in CD31, whereas aspirin increased Ki-67, suppressed the increase in CD31 and attenuated the decrease in CD105 mRNA levels. Prasugrel did not display any effects. CONCLUSION: Ticagrelor attenuated adverse remodeling and deterioration of left ventricular systolic function despite starting treatment after the myocardial ischemia-reperfusion injury is completed. Aspirin had similar effects; however, when combined with ticagrelor, the protective effects were significantly attenuated. Ticagrelor increased the levels of several markers of stem cells and regeneration, suggesting cardiac healing by recruiting regenerative cells into the infarct.
KW - Apoptosis; Aspirin; Fibrosis; Inflammation; Ischemia-reperfusion; Prasugrel; Remodeling; Stem cells; Ticagrelor
UR - http://www.scopus.com/inward/record.url?scp=85076320058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076320058&partnerID=8YFLogxK
U2 - 10.33594/000000189
DO - 10.33594/000000189
M3 - Article
C2 - 31820856
SN - 1015-8987
VL - 53
SP - 961
EP - 981
JO - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
IS - 6
ER -