TY - JOUR
T1 - TNF-α-induced NF-κB/RelA Ser276 phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway
AU - Jamaluddin, Mohammad
AU - Wang, Shaofei
AU - Boldogh, Istvan
AU - Tian, Bing
AU - Brasier, Allan
N1 - Funding Information:
This project was supported by NIAID grant R01 AI40218 (A.R.B.) and core laboratory support provided by NIEHS grant P30 ES06676 (to J. Halpert, UTMB) and the Sealy Center for Cancer Biology Real Time PCR Core (T. Ko, Director).
PY - 2007/7
Y1 - 2007/7
N2 - Tumor necrosis factor-α (TNF-α) is a potent mediator of inflammation, inducing expression of a gene network mediated by NF-κB. Previously we found that TNF-α-induced reactive oxygen species (ROS) production is required for NF-κB action because antioxidants inhibited TNF-α-inducible IL-8 expression without affecting its nuclear translocation. Here, we further investigated this ROS pathway controlling NF-κB/RelA dependent gene expression. We observed that TNF-α enhanced ROS production ∼ 2-fold 20 min after stimulation and significantly increased oxidative DNA damage (8-oxoguanine lesions) over controls. Treatment with chemically unrelated antioxidants specifically inhibited expression of TNF-inducible NF-κB-dependent genes without producing detectable cytotoxicity or affecting GAPDH expression. We found that TNF-α-induced NF-κB/RelA Ser276 phosphorylation, a modification critical for its transcriptional activity, was inhibited by abrogation of the ROS signaling pathway, whereas NF-κB/RelA Ser536 phosphorylation was not. Interestingly, antioxidant treatment selectively inhibited TNF-α-induced catalytic activity of cAMP dependent protein kinase A (PKAc) but not mitogen-stress related kinase-1 (MSK1), kinases known to phosphorylate RelA at Ser276. Using PKAc inhibitors and siRNA mediated PKAc knockdown, TNF-α-induced Ser276 phosphorylation and IL-8 expression were both significantly reduced, indicating PKAc is required for RelA Ser276 phosphorylation. Consistently, a site mutation of Rel A (Ser276 to Ala) in RelA-deficient embryonic fibroblasts failed to activate IL-8 Luciferase activity in response to TNF-α. Furthermore, TNF-α-inducible NF-κB/RelA interaction with the co-activator CBP/p300, essential for enhanceosome formation, was attenuated by antioxidant treatment. Using chromatin immunoprecipitation assay (ChIP), we observed that recruitment of p300 and RNA polymerase II (Pol II) to the IL-8 promoter was also abrogated by antioxidant. These results indicate that the ROS-mediated TNF-α-induced IL-8 transcription is regulated by NF-κB/RelA phosphorylation at the critical Ser276 residue by PKAc, resulting in stable enhanceosome formation on target genes. These studies provide insight into a novel antioxidant-sensitive pathway that can be targeted to inhibit NF-κB-mediated inflammation.
AB - Tumor necrosis factor-α (TNF-α) is a potent mediator of inflammation, inducing expression of a gene network mediated by NF-κB. Previously we found that TNF-α-induced reactive oxygen species (ROS) production is required for NF-κB action because antioxidants inhibited TNF-α-inducible IL-8 expression without affecting its nuclear translocation. Here, we further investigated this ROS pathway controlling NF-κB/RelA dependent gene expression. We observed that TNF-α enhanced ROS production ∼ 2-fold 20 min after stimulation and significantly increased oxidative DNA damage (8-oxoguanine lesions) over controls. Treatment with chemically unrelated antioxidants specifically inhibited expression of TNF-inducible NF-κB-dependent genes without producing detectable cytotoxicity or affecting GAPDH expression. We found that TNF-α-induced NF-κB/RelA Ser276 phosphorylation, a modification critical for its transcriptional activity, was inhibited by abrogation of the ROS signaling pathway, whereas NF-κB/RelA Ser536 phosphorylation was not. Interestingly, antioxidant treatment selectively inhibited TNF-α-induced catalytic activity of cAMP dependent protein kinase A (PKAc) but not mitogen-stress related kinase-1 (MSK1), kinases known to phosphorylate RelA at Ser276. Using PKAc inhibitors and siRNA mediated PKAc knockdown, TNF-α-induced Ser276 phosphorylation and IL-8 expression were both significantly reduced, indicating PKAc is required for RelA Ser276 phosphorylation. Consistently, a site mutation of Rel A (Ser276 to Ala) in RelA-deficient embryonic fibroblasts failed to activate IL-8 Luciferase activity in response to TNF-α. Furthermore, TNF-α-inducible NF-κB/RelA interaction with the co-activator CBP/p300, essential for enhanceosome formation, was attenuated by antioxidant treatment. Using chromatin immunoprecipitation assay (ChIP), we observed that recruitment of p300 and RNA polymerase II (Pol II) to the IL-8 promoter was also abrogated by antioxidant. These results indicate that the ROS-mediated TNF-α-induced IL-8 transcription is regulated by NF-κB/RelA phosphorylation at the critical Ser276 residue by PKAc, resulting in stable enhanceosome formation on target genes. These studies provide insight into a novel antioxidant-sensitive pathway that can be targeted to inhibit NF-κB-mediated inflammation.
KW - Enhanceosome
KW - IL-8
KW - NF-κB
KW - Phosphorylation
KW - Reactive oxygen species
KW - RelA
UR - http://www.scopus.com/inward/record.url?scp=34249289745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249289745&partnerID=8YFLogxK
U2 - 10.1016/j.cellsig.2007.01.020
DO - 10.1016/j.cellsig.2007.01.020
M3 - Article
C2 - 17317104
AN - SCOPUS:34249289745
SN - 0898-6568
VL - 19
SP - 1419
EP - 1433
JO - Cellular Signalling
JF - Cellular Signalling
IS - 7
ER -