Two distinct modes of myosin assembly and dynamics during epithelial wound closure

Masako Tamada, Tomas D. Perez, W. James Nelson, Michael P. Sheetz

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

Actomyosin contraction powers the sealing of epithelial sheets during embryogenesis and wound closure; however, the mechanisms are poorly understood. After laser ablation wounding of Madin-Darby canine kidney cell monolayers, we observed distinct steps in wound closure from time-lapse images of myosin distribution during resealing. Immediately upon wounding, actin and myosin II regulatory light chain accumulated at two locations: (1) in a ring adjacent to the tight junction that circumscribed the wound and (2) in fibers at the base of the cell in membranes extending over the wound site. Rho-kinase activity was required for assembly of the myosin ring, and myosin II activity was required for contraction but not for basal membrane extension. As it contracted, the myosin ring moved toward the basal membrane with ZO-1 and Rho-kinase. Thus, we suggest that tight junctions serve as attachment points for the actomyosin ring during wound closure and that Rho-kinase is required for localization and activation of the contractile ring.

Original languageEnglish (US)
Pages (from-to)27-33
Number of pages7
JournalJournal of Cell Biology
Volume176
Issue number1
DOIs
StatePublished - Jan 1 2007

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Two distinct modes of myosin assembly and dynamics during epithelial wound closure'. Together they form a unique fingerprint.

Cite this