Ultrafast, Ultrasensitive Detection and Imaging of Single Cardiac Troponin-T Molecules

Pavel N. Melentiev, Lina V. Son, Denis S. Kudryavtsev, Igor E. Kasheverov, Victor I. Tsetlin, Rinat O. Esenaliev, Victor I. Balykin

    Research output: Contribution to journalArticlepeer-review

    9 Scopus citations


    The fluorescence-based methods of single-molecule optical detection have opened up unprecedented possibilities for imaging, monitoring, and sensing at a single-molecule level. However, single-molecule detection methods are very slow, making them practically inapplicable. In this paper, we show how to overcome this key limitation using the expanded laser spot, laser excitation in a nonfluorescent spectral window of biomolecules, and more binding fluorescent molecules on a biomolecule that increases the detection volume and the number of collected photons. We demonstrate advantages of the developed approach unreachable by any other technique using detection of single cardiac troponin-T molecules: (i) 1000-fold faster than by known approaches, (ii) real-time imaging of single troponin-T molecules dissolved in human blood serum, (iii) measurement of troponin-T concentration with a clinically important sensitivity of about 1 pg/mL. The developed approach can be used for ultrafast, ultrasensitive detection, monitoring, and real-time imaging of other biomolecules as well as of larger objects including pathogenic viruses and bacteria.

    Original languageEnglish (US)
    Pages (from-to)3576-3583
    Number of pages8
    JournalACS Sensors
    Issue number11
    StatePublished - Nov 25 2020


    • cardiomarkers
    • real-time bio-imaging
    • single biomolecule detection
    • single-molecule counting techniques in sensorics
    • troponin-T

    ASJC Scopus subject areas

    • Bioengineering
    • Instrumentation
    • Process Chemistry and Technology
    • Fluid Flow and Transfer Processes


    Dive into the research topics of 'Ultrafast, Ultrasensitive Detection and Imaging of Single Cardiac Troponin-T Molecules'. Together they form a unique fingerprint.

    Cite this