Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera

Psychodidae)

L. L. Walters, G. B. Modi, G. L. Chaplin, R. B. Tesh

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

The development of Leishmania chagasi, etiologic agent of American visceral leishmaniasis, was studied by light and electron microscopy in the gut of the sand fly, Lutzomyia longipalpis, a natural vector. New aspects of suprapylarian Leishmania behavior were elucidated. In the sand fly midgut, amastigotes transformed into promastigotes (division promastigote I) during a first division sequence within the bloodmeal. Secondary division of these promastigotes resulted in a second form (division promastigote II), and these subsequently elongated into nectomonad promastigotes. Nectomonads existed in long and short populations which divided in the bloodmeal and throughout the midgut lumen after escape from the peritrophic membrane. Nectomonads adhered to the midgut cells in a highly organized manner, with their flagella embedded deep into microvilli and cytoplasm. Migration of parasites from the posterior midgut into the cardia/stomodeal valve region at 36 hr was associated with breakdown of the peritrophic membrane anteriorly. Posterior breakdown at 48 hr resulted in a peritrophic tube open at both ends containing some parasites within the digesting bloodmeal for up to 6 days postinfection. At the stomodeal valve, a myriad of slender and rounded promastigotes attached to the intima by flagellar hemidesmosomes; these may represent a transformation sequence from slender nectomonads to pear-shaped haptomonads. Pear-shaped forms appear to be precoursors of paramastigotes, which also attached to the valve intima. Both rounded haptomonads and paramastigotes were found in the esophagus, dividing in a complex sequence initiated by posterior cleavage of the cytoplasm producing unique heart-shaped forms. Dividing paramastigotes also colonized the pharynx up to the cibarial valve. The ultrastructure of paramastigotes suggested that they may be infective forms, capable of some motility in the foregut. Free-swimming 'inefective' promastigotes were observed throughout the midgut and foregut, were attached in the pharynx (armature region), and were associated with the labrum-epipharynx of the proboscis in 3.6% of flies (16 days). The fine structure of hemidesmosomes in the foregut showed regional specializations, including the presence of plasmalemmar bridges in the gap space.

Original languageEnglish (US)
Pages (from-to)295-317
Number of pages23
JournalAmerican Journal of Tropical Medicine and Hygiene
Volume41
Issue number3
StatePublished - 1989
Externally publishedYes

Fingerprint

Leishmania infantum
Psychodidae
Hemidesmosomes
Diptera
Pyrus
Pharynx
Cytoplasm
Parasites
Cardia
Cutaneous Leishmaniasis
Visceral Leishmaniasis
Membranes
Nasopharynx
Flagella
Leishmania
Microvilli
Esophagus
Electron Microscopy
Light
Population

ASJC Scopus subject areas

  • Parasitology
  • Infectious Diseases

Cite this

Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera : Psychodidae). / Walters, L. L.; Modi, G. B.; Chaplin, G. L.; Tesh, R. B.

In: American Journal of Tropical Medicine and Hygiene, Vol. 41, No. 3, 1989, p. 295-317.

Research output: Contribution to journalArticle

@article{438616ea8eb34fd28006295112ddb437,
title = "Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae)",
abstract = "The development of Leishmania chagasi, etiologic agent of American visceral leishmaniasis, was studied by light and electron microscopy in the gut of the sand fly, Lutzomyia longipalpis, a natural vector. New aspects of suprapylarian Leishmania behavior were elucidated. In the sand fly midgut, amastigotes transformed into promastigotes (division promastigote I) during a first division sequence within the bloodmeal. Secondary division of these promastigotes resulted in a second form (division promastigote II), and these subsequently elongated into nectomonad promastigotes. Nectomonads existed in long and short populations which divided in the bloodmeal and throughout the midgut lumen after escape from the peritrophic membrane. Nectomonads adhered to the midgut cells in a highly organized manner, with their flagella embedded deep into microvilli and cytoplasm. Migration of parasites from the posterior midgut into the cardia/stomodeal valve region at 36 hr was associated with breakdown of the peritrophic membrane anteriorly. Posterior breakdown at 48 hr resulted in a peritrophic tube open at both ends containing some parasites within the digesting bloodmeal for up to 6 days postinfection. At the stomodeal valve, a myriad of slender and rounded promastigotes attached to the intima by flagellar hemidesmosomes; these may represent a transformation sequence from slender nectomonads to pear-shaped haptomonads. Pear-shaped forms appear to be precoursors of paramastigotes, which also attached to the valve intima. Both rounded haptomonads and paramastigotes were found in the esophagus, dividing in a complex sequence initiated by posterior cleavage of the cytoplasm producing unique heart-shaped forms. Dividing paramastigotes also colonized the pharynx up to the cibarial valve. The ultrastructure of paramastigotes suggested that they may be infective forms, capable of some motility in the foregut. Free-swimming 'inefective' promastigotes were observed throughout the midgut and foregut, were attached in the pharynx (armature region), and were associated with the labrum-epipharynx of the proboscis in 3.6{\%} of flies (16 days). The fine structure of hemidesmosomes in the foregut showed regional specializations, including the presence of plasmalemmar bridges in the gap space.",
author = "Walters, {L. L.} and Modi, {G. B.} and Chaplin, {G. L.} and Tesh, {R. B.}",
year = "1989",
language = "English (US)",
volume = "41",
pages = "295--317",
journal = "American Journal of Tropical Medicine and Hygiene",
issn = "0002-9637",
publisher = "American Society of Tropical Medicine and Hygiene",
number = "3",

}

TY - JOUR

T1 - Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera

T2 - Psychodidae)

AU - Walters, L. L.

AU - Modi, G. B.

AU - Chaplin, G. L.

AU - Tesh, R. B.

PY - 1989

Y1 - 1989

N2 - The development of Leishmania chagasi, etiologic agent of American visceral leishmaniasis, was studied by light and electron microscopy in the gut of the sand fly, Lutzomyia longipalpis, a natural vector. New aspects of suprapylarian Leishmania behavior were elucidated. In the sand fly midgut, amastigotes transformed into promastigotes (division promastigote I) during a first division sequence within the bloodmeal. Secondary division of these promastigotes resulted in a second form (division promastigote II), and these subsequently elongated into nectomonad promastigotes. Nectomonads existed in long and short populations which divided in the bloodmeal and throughout the midgut lumen after escape from the peritrophic membrane. Nectomonads adhered to the midgut cells in a highly organized manner, with their flagella embedded deep into microvilli and cytoplasm. Migration of parasites from the posterior midgut into the cardia/stomodeal valve region at 36 hr was associated with breakdown of the peritrophic membrane anteriorly. Posterior breakdown at 48 hr resulted in a peritrophic tube open at both ends containing some parasites within the digesting bloodmeal for up to 6 days postinfection. At the stomodeal valve, a myriad of slender and rounded promastigotes attached to the intima by flagellar hemidesmosomes; these may represent a transformation sequence from slender nectomonads to pear-shaped haptomonads. Pear-shaped forms appear to be precoursors of paramastigotes, which also attached to the valve intima. Both rounded haptomonads and paramastigotes were found in the esophagus, dividing in a complex sequence initiated by posterior cleavage of the cytoplasm producing unique heart-shaped forms. Dividing paramastigotes also colonized the pharynx up to the cibarial valve. The ultrastructure of paramastigotes suggested that they may be infective forms, capable of some motility in the foregut. Free-swimming 'inefective' promastigotes were observed throughout the midgut and foregut, were attached in the pharynx (armature region), and were associated with the labrum-epipharynx of the proboscis in 3.6% of flies (16 days). The fine structure of hemidesmosomes in the foregut showed regional specializations, including the presence of plasmalemmar bridges in the gap space.

AB - The development of Leishmania chagasi, etiologic agent of American visceral leishmaniasis, was studied by light and electron microscopy in the gut of the sand fly, Lutzomyia longipalpis, a natural vector. New aspects of suprapylarian Leishmania behavior were elucidated. In the sand fly midgut, amastigotes transformed into promastigotes (division promastigote I) during a first division sequence within the bloodmeal. Secondary division of these promastigotes resulted in a second form (division promastigote II), and these subsequently elongated into nectomonad promastigotes. Nectomonads existed in long and short populations which divided in the bloodmeal and throughout the midgut lumen after escape from the peritrophic membrane. Nectomonads adhered to the midgut cells in a highly organized manner, with their flagella embedded deep into microvilli and cytoplasm. Migration of parasites from the posterior midgut into the cardia/stomodeal valve region at 36 hr was associated with breakdown of the peritrophic membrane anteriorly. Posterior breakdown at 48 hr resulted in a peritrophic tube open at both ends containing some parasites within the digesting bloodmeal for up to 6 days postinfection. At the stomodeal valve, a myriad of slender and rounded promastigotes attached to the intima by flagellar hemidesmosomes; these may represent a transformation sequence from slender nectomonads to pear-shaped haptomonads. Pear-shaped forms appear to be precoursors of paramastigotes, which also attached to the valve intima. Both rounded haptomonads and paramastigotes were found in the esophagus, dividing in a complex sequence initiated by posterior cleavage of the cytoplasm producing unique heart-shaped forms. Dividing paramastigotes also colonized the pharynx up to the cibarial valve. The ultrastructure of paramastigotes suggested that they may be infective forms, capable of some motility in the foregut. Free-swimming 'inefective' promastigotes were observed throughout the midgut and foregut, were attached in the pharynx (armature region), and were associated with the labrum-epipharynx of the proboscis in 3.6% of flies (16 days). The fine structure of hemidesmosomes in the foregut showed regional specializations, including the presence of plasmalemmar bridges in the gap space.

UR - http://www.scopus.com/inward/record.url?scp=0024458042&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024458042&partnerID=8YFLogxK

M3 - Article

VL - 41

SP - 295

EP - 317

JO - American Journal of Tropical Medicine and Hygiene

JF - American Journal of Tropical Medicine and Hygiene

SN - 0002-9637

IS - 3

ER -