Use of Soluble Extracellular Regions of MmpL (SERoM) as Vaccines for Tuberculosis

Emily Strong, Nicholas P. West

Research output: Contribution to journalArticle

Abstract

The current vaccine for tuberculosis (TB) is a live attenuated strain of Mycobacterium bovis (BCG) and while effective at reducing the potential for disseminated TB in young children its disease protection rates in adults is highly variable while it confers little protection against latent TB. With these limitations a new vaccine is desperately needed. We investigated the efficacy of three members of the mycobacterial membrane protein Large (MmpL) family as potential subunit vaccines for TB. MmpLs are large, multifunctional integral membrane proteins, and as such are recalcitrant to purification. Here, we describe a strategy of producing synthetic antigens comprised of the soluble, extracellular regions of MmpL (SERoM)-1, MmpL8 and MmpL10 (SERoM-8 and 10 respectively) as potential vaccine candidates. SERoM-1 and SERoM-8 were determined to be highly immunogenic by IFN-γ ELISpot assays, with 0.1% of all splenocytes from SERoM-1 vaccinated mice producing IFN-γ when re-stimulated with MmpL1. A combined SERoM-1, -8 and -10 vaccine demonstrated significant protection against M. tuberculosis challenge in a murine model of TB, resulting in approximately 10-fold reduction in bacterial numbers following challenge in both the lungs and spleens compared to adjuvant only vaccinated mice. These protective effects were comparable to that achieved with BCG.

Original languageEnglish (US)
Article number5604
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

Fingerprint

Tuberculosis Vaccines
Membrane Proteins
Tuberculosis
Mycobacterium bovis
Vaccines
Latent Tuberculosis
Synthetic Vaccines
Subunit Vaccines
Spleen
Lung

ASJC Scopus subject areas

  • General

Cite this

Use of Soluble Extracellular Regions of MmpL (SERoM) as Vaccines for Tuberculosis. / Strong, Emily; West, Nicholas P.

In: Scientific reports, Vol. 8, No. 1, 5604, 01.12.2018.

Research output: Contribution to journalArticle

@article{ace2a87b85b14ccfb141c3606fa8b4d7,
title = "Use of Soluble Extracellular Regions of MmpL (SERoM) as Vaccines for Tuberculosis",
abstract = "The current vaccine for tuberculosis (TB) is a live attenuated strain of Mycobacterium bovis (BCG) and while effective at reducing the potential for disseminated TB in young children its disease protection rates in adults is highly variable while it confers little protection against latent TB. With these limitations a new vaccine is desperately needed. We investigated the efficacy of three members of the mycobacterial membrane protein Large (MmpL) family as potential subunit vaccines for TB. MmpLs are large, multifunctional integral membrane proteins, and as such are recalcitrant to purification. Here, we describe a strategy of producing synthetic antigens comprised of the soluble, extracellular regions of MmpL (SERoM)-1, MmpL8 and MmpL10 (SERoM-8 and 10 respectively) as potential vaccine candidates. SERoM-1 and SERoM-8 were determined to be highly immunogenic by IFN-γ ELISpot assays, with 0.1{\%} of all splenocytes from SERoM-1 vaccinated mice producing IFN-γ when re-stimulated with MmpL1. A combined SERoM-1, -8 and -10 vaccine demonstrated significant protection against M. tuberculosis challenge in a murine model of TB, resulting in approximately 10-fold reduction in bacterial numbers following challenge in both the lungs and spleens compared to adjuvant only vaccinated mice. These protective effects were comparable to that achieved with BCG.",
author = "Emily Strong and West, {Nicholas P.}",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41598-018-23893-3",
language = "English (US)",
volume = "8",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Use of Soluble Extracellular Regions of MmpL (SERoM) as Vaccines for Tuberculosis

AU - Strong, Emily

AU - West, Nicholas P.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - The current vaccine for tuberculosis (TB) is a live attenuated strain of Mycobacterium bovis (BCG) and while effective at reducing the potential for disseminated TB in young children its disease protection rates in adults is highly variable while it confers little protection against latent TB. With these limitations a new vaccine is desperately needed. We investigated the efficacy of three members of the mycobacterial membrane protein Large (MmpL) family as potential subunit vaccines for TB. MmpLs are large, multifunctional integral membrane proteins, and as such are recalcitrant to purification. Here, we describe a strategy of producing synthetic antigens comprised of the soluble, extracellular regions of MmpL (SERoM)-1, MmpL8 and MmpL10 (SERoM-8 and 10 respectively) as potential vaccine candidates. SERoM-1 and SERoM-8 were determined to be highly immunogenic by IFN-γ ELISpot assays, with 0.1% of all splenocytes from SERoM-1 vaccinated mice producing IFN-γ when re-stimulated with MmpL1. A combined SERoM-1, -8 and -10 vaccine demonstrated significant protection against M. tuberculosis challenge in a murine model of TB, resulting in approximately 10-fold reduction in bacterial numbers following challenge in both the lungs and spleens compared to adjuvant only vaccinated mice. These protective effects were comparable to that achieved with BCG.

AB - The current vaccine for tuberculosis (TB) is a live attenuated strain of Mycobacterium bovis (BCG) and while effective at reducing the potential for disseminated TB in young children its disease protection rates in adults is highly variable while it confers little protection against latent TB. With these limitations a new vaccine is desperately needed. We investigated the efficacy of three members of the mycobacterial membrane protein Large (MmpL) family as potential subunit vaccines for TB. MmpLs are large, multifunctional integral membrane proteins, and as such are recalcitrant to purification. Here, we describe a strategy of producing synthetic antigens comprised of the soluble, extracellular regions of MmpL (SERoM)-1, MmpL8 and MmpL10 (SERoM-8 and 10 respectively) as potential vaccine candidates. SERoM-1 and SERoM-8 were determined to be highly immunogenic by IFN-γ ELISpot assays, with 0.1% of all splenocytes from SERoM-1 vaccinated mice producing IFN-γ when re-stimulated with MmpL1. A combined SERoM-1, -8 and -10 vaccine demonstrated significant protection against M. tuberculosis challenge in a murine model of TB, resulting in approximately 10-fold reduction in bacterial numbers following challenge in both the lungs and spleens compared to adjuvant only vaccinated mice. These protective effects were comparable to that achieved with BCG.

UR - http://www.scopus.com/inward/record.url?scp=85045003882&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045003882&partnerID=8YFLogxK

U2 - 10.1038/s41598-018-23893-3

DO - 10.1038/s41598-018-23893-3

M3 - Article

VL - 8

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 5604

ER -