VAMP8 contributes to TRIM6-mediated type-I interferon antiviral response during West Nile virus infection

Sarah van Tol, Colm Atkins, Preeti Bharaj, Kendra N. Johnson, Adam Hage, Alexander N. Freiberg, Ricardo Rajsbaum

Research output: Contribution to journalArticlepeer-review

Abstract

Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host's IFN-I response, West Nile Virus (WNV) replication is sensitive to pre-treatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV's sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells WNV replication is significantly increased and IFN-I induction and signaling is impaired compared to wild-type (wt) cells. IFNβ pre-treatment was more effective in protecting against subsequent WNV infection in wt cells as compared to TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced Jak1 and STAT1 phosphorylation and impaired induction of several ISGs following WNV infection or IFNβ treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function is dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identified VAMP8 as a novel regulator of the IFN-I system.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Aug 28 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'VAMP8 contributes to TRIM6-mediated type-I interferon antiviral response during West Nile virus infection'. Together they form a unique fingerprint.

Cite this