Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane

A. S. De Vriese, Ronald Tilton, C. C. Stephan, N. H. Lameire

Research output: Contribution to journalArticle

143 Citations (Scopus)

Abstract

Long-term peritoneal dialysis is associated with the development of functional and structural alterations of the peritoneal membrane. Long-term exposure to the high glucose concentrations in conventional peritoneal dialysate has been implicated in the pathogenesis of peritoneal hyperpermeability and neoangiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that potently stimulates microvascular permeability and proliferation. High glucose exposure upregulates VEGF expression in various cell types and tissues. This study investigated whether VEGF plays a pathogenetic role in hyperglycemia-induced microvascular dysfunction in the peritoneal membrane. The peritoneal microcirculation of streptozotocin-induced diabetic rats and age-matched controls was studied in vivo with a combination of functional and morphologic techniques. The diabetic microcirculation was characterized by an elevated transport of small solutes, indicating the presence of an increased effective vascular surface area. The leakage of FITC-albumin was more rapid in diabetic vessels, suggesting hyperpermeability for macromolecules. Structurally, an increased vascular density with focal areas of irregular capillary budding was found in the diabetic peritoneum. The hyperglycemia-induced structural and functional microvascular alterations were prevented by long-term treatment with neutralizing anti-VEGF monoclonal antibodies, whereas treatment with isotype-matched control antibodies had no effect. VEGF blockade did not influence microvascular density or macromolecular leakage in control rats, demonstrating specificity for the hyperglycemia-induced alterations. The present results thus support an causative link among high glucose exposure, upregulation of VEGF, and peritoneal microvascular dysfunction.

Original languageEnglish (US)
Pages (from-to)1734-1741
Number of pages8
JournalJournal of the American Society of Nephrology
Volume12
Issue number8
StatePublished - 2001
Externally publishedYes

Fingerprint

Hyperglycemia
Vascular Endothelial Growth Factor A
Membranes
Microcirculation
Glucose
Blood Vessels
Up-Regulation
Endothelial Growth Factors
Peritoneum
Dialysis Solutions
Capillary Permeability
Peritoneal Dialysis
Streptozocin
Monoclonal Antibodies
Antibodies
Therapeutics

ASJC Scopus subject areas

  • Nephrology

Cite this

Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. / De Vriese, A. S.; Tilton, Ronald; Stephan, C. C.; Lameire, N. H.

In: Journal of the American Society of Nephrology, Vol. 12, No. 8, 2001, p. 1734-1741.

Research output: Contribution to journalArticle

@article{30103f7c5e7247beb5b8748b102e09cc,
title = "Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane",
abstract = "Long-term peritoneal dialysis is associated with the development of functional and structural alterations of the peritoneal membrane. Long-term exposure to the high glucose concentrations in conventional peritoneal dialysate has been implicated in the pathogenesis of peritoneal hyperpermeability and neoangiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that potently stimulates microvascular permeability and proliferation. High glucose exposure upregulates VEGF expression in various cell types and tissues. This study investigated whether VEGF plays a pathogenetic role in hyperglycemia-induced microvascular dysfunction in the peritoneal membrane. The peritoneal microcirculation of streptozotocin-induced diabetic rats and age-matched controls was studied in vivo with a combination of functional and morphologic techniques. The diabetic microcirculation was characterized by an elevated transport of small solutes, indicating the presence of an increased effective vascular surface area. The leakage of FITC-albumin was more rapid in diabetic vessels, suggesting hyperpermeability for macromolecules. Structurally, an increased vascular density with focal areas of irregular capillary budding was found in the diabetic peritoneum. The hyperglycemia-induced structural and functional microvascular alterations were prevented by long-term treatment with neutralizing anti-VEGF monoclonal antibodies, whereas treatment with isotype-matched control antibodies had no effect. VEGF blockade did not influence microvascular density or macromolecular leakage in control rats, demonstrating specificity for the hyperglycemia-induced alterations. The present results thus support an causative link among high glucose exposure, upregulation of VEGF, and peritoneal microvascular dysfunction.",
author = "{De Vriese}, {A. S.} and Ronald Tilton and Stephan, {C. C.} and Lameire, {N. H.}",
year = "2001",
language = "English (US)",
volume = "12",
pages = "1734--1741",
journal = "Journal of the American Society of Nephrology : JASN",
issn = "1046-6673",
publisher = "American Society of Nephrology",
number = "8",

}

TY - JOUR

T1 - Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane

AU - De Vriese, A. S.

AU - Tilton, Ronald

AU - Stephan, C. C.

AU - Lameire, N. H.

PY - 2001

Y1 - 2001

N2 - Long-term peritoneal dialysis is associated with the development of functional and structural alterations of the peritoneal membrane. Long-term exposure to the high glucose concentrations in conventional peritoneal dialysate has been implicated in the pathogenesis of peritoneal hyperpermeability and neoangiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that potently stimulates microvascular permeability and proliferation. High glucose exposure upregulates VEGF expression in various cell types and tissues. This study investigated whether VEGF plays a pathogenetic role in hyperglycemia-induced microvascular dysfunction in the peritoneal membrane. The peritoneal microcirculation of streptozotocin-induced diabetic rats and age-matched controls was studied in vivo with a combination of functional and morphologic techniques. The diabetic microcirculation was characterized by an elevated transport of small solutes, indicating the presence of an increased effective vascular surface area. The leakage of FITC-albumin was more rapid in diabetic vessels, suggesting hyperpermeability for macromolecules. Structurally, an increased vascular density with focal areas of irregular capillary budding was found in the diabetic peritoneum. The hyperglycemia-induced structural and functional microvascular alterations were prevented by long-term treatment with neutralizing anti-VEGF monoclonal antibodies, whereas treatment with isotype-matched control antibodies had no effect. VEGF blockade did not influence microvascular density or macromolecular leakage in control rats, demonstrating specificity for the hyperglycemia-induced alterations. The present results thus support an causative link among high glucose exposure, upregulation of VEGF, and peritoneal microvascular dysfunction.

AB - Long-term peritoneal dialysis is associated with the development of functional and structural alterations of the peritoneal membrane. Long-term exposure to the high glucose concentrations in conventional peritoneal dialysate has been implicated in the pathogenesis of peritoneal hyperpermeability and neoangiogenesis. Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that potently stimulates microvascular permeability and proliferation. High glucose exposure upregulates VEGF expression in various cell types and tissues. This study investigated whether VEGF plays a pathogenetic role in hyperglycemia-induced microvascular dysfunction in the peritoneal membrane. The peritoneal microcirculation of streptozotocin-induced diabetic rats and age-matched controls was studied in vivo with a combination of functional and morphologic techniques. The diabetic microcirculation was characterized by an elevated transport of small solutes, indicating the presence of an increased effective vascular surface area. The leakage of FITC-albumin was more rapid in diabetic vessels, suggesting hyperpermeability for macromolecules. Structurally, an increased vascular density with focal areas of irregular capillary budding was found in the diabetic peritoneum. The hyperglycemia-induced structural and functional microvascular alterations were prevented by long-term treatment with neutralizing anti-VEGF monoclonal antibodies, whereas treatment with isotype-matched control antibodies had no effect. VEGF blockade did not influence microvascular density or macromolecular leakage in control rats, demonstrating specificity for the hyperglycemia-induced alterations. The present results thus support an causative link among high glucose exposure, upregulation of VEGF, and peritoneal microvascular dysfunction.

UR - http://www.scopus.com/inward/record.url?scp=0034918995&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034918995&partnerID=8YFLogxK

M3 - Article

VL - 12

SP - 1734

EP - 1741

JO - Journal of the American Society of Nephrology : JASN

JF - Journal of the American Society of Nephrology : JASN

SN - 1046-6673

IS - 8

ER -