TY - JOUR
T1 - WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-α (TNF-α)-stimulated cardiac fibroblast proliferation but inhibits TNF-α-induced cardiomyocyte death
AU - Venkatachalam, Kaliyamurthi
AU - Venkatesan, Balachander
AU - Valente, Anthony J.
AU - Melby, Peter C.
AU - Nandish, Sailesh
AU - Reusch, Jane E.B.
AU - Clark, Robert A.
AU - Chandrasekar, Bysani
PY - 2009/5/22
Y1 - 2009/5/22
N2 - WNT1-inducible signaling pathway protein-1 (WISP1), a member of the CYR61/CTGF/Nov family of growth factors, can mediate cell growth, transformation, and survival. Previously we demonstrated that WISP1 is up-regulated in post-infarct heart, stimulates cardiac fibroblast proliferation, and is induced by the proinflammatory cytokine tumor necrosis factor-α (TNF-α). Here we investigated (i) the localization of TNF-α and WISP1 in post-infarct heart, (ii) the mechanism of TNF-α-mediated WISP1 induction in primary human cardiac fibroblasts (CF), (iii) the role of WISP1 in TNF-α-mediated CF proliferation and collagen production, and (iv) the effects of WISP1 on TNF-α-mediated cardiomyocyte death. TNF-α and WISP1 expressions were increased in the border zones and nonischemic remote regions of the post-ischemic heart. In CF, TNF-α potently induced WISP1 expression in cyclic AMP response element-binding protein (CREB)-dependent manner. TNF-α induced CREB phosphorylation in vitro and DNA binding and reporter gene activities in vivo. TNF-α induced CREB activation via ERK1/2, and inhibition of ERK1/2 and CREB blunted TNF-α-mediated WISP1 induction. Most importantly, WISP1 knockdown attenuated TNF-α stimulated collagen production and CF proliferation. Furthermore, WISP1 attenuated TNF-α-mediated cardiomyocyte death, thus demonstrating pro-mitogenic and pro-survival effects for WISP1 in myocardial constituent cells. Our results suggest that a TNF-α/WISP1 signaling pathway may contribute to post-infarct cardiac remodeling, a condition characterized by fibrosis and progressive cardiomyocyte loss.
AB - WNT1-inducible signaling pathway protein-1 (WISP1), a member of the CYR61/CTGF/Nov family of growth factors, can mediate cell growth, transformation, and survival. Previously we demonstrated that WISP1 is up-regulated in post-infarct heart, stimulates cardiac fibroblast proliferation, and is induced by the proinflammatory cytokine tumor necrosis factor-α (TNF-α). Here we investigated (i) the localization of TNF-α and WISP1 in post-infarct heart, (ii) the mechanism of TNF-α-mediated WISP1 induction in primary human cardiac fibroblasts (CF), (iii) the role of WISP1 in TNF-α-mediated CF proliferation and collagen production, and (iv) the effects of WISP1 on TNF-α-mediated cardiomyocyte death. TNF-α and WISP1 expressions were increased in the border zones and nonischemic remote regions of the post-ischemic heart. In CF, TNF-α potently induced WISP1 expression in cyclic AMP response element-binding protein (CREB)-dependent manner. TNF-α induced CREB phosphorylation in vitro and DNA binding and reporter gene activities in vivo. TNF-α induced CREB activation via ERK1/2, and inhibition of ERK1/2 and CREB blunted TNF-α-mediated WISP1 induction. Most importantly, WISP1 knockdown attenuated TNF-α stimulated collagen production and CF proliferation. Furthermore, WISP1 attenuated TNF-α-mediated cardiomyocyte death, thus demonstrating pro-mitogenic and pro-survival effects for WISP1 in myocardial constituent cells. Our results suggest that a TNF-α/WISP1 signaling pathway may contribute to post-infarct cardiac remodeling, a condition characterized by fibrosis and progressive cardiomyocyte loss.
UR - http://www.scopus.com/inward/record.url?scp=67649774720&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649774720&partnerID=8YFLogxK
U2 - 10.1074/jbc.M809757200
DO - 10.1074/jbc.M809757200
M3 - Article
C2 - 19339243
AN - SCOPUS:67649774720
SN - 0021-9258
VL - 284
SP - 14414
EP - 14427
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -