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Rapid, nongenomic signaling effects of several
xenoestrogens involved in early- vs. late-stage

prostate cancer cell proliferation
Luke Y Koong and Cheryl S Watson*

Biochemistry & Molecular Biology Department; University of Texas Medical Branch; Galveston, TX USA

Keywords: BPA, coumestrol, diet, genistein, membrane estrogen receptor, resveratrol

Xenoestrogens (XEs) are exogenous mimics capable of binding to estrogen receptors (ERs), competing with/
disrupting the actions of physiological estrogens, and promoting tumor growth in the prostate and other endocrine
tissues. Humans are exposed to numerous XEs including environmental contaminants such as plastics monomer
bisphenol A (BPA), and dietary phytoestrogens such as coumestrol and genistein from soy, and resveratrol, highest in
red grapes. There is growing interest in the ability of phytoestrogens to prevent or treat tumors. We previously reported
that multiple cellular mechanisms influence the number of prostate cancer cells after estradiol or diethylstilbestrol
treatment. We now examine the effect of these XEs on signaling mechanisms that alter the number of LAPC-4
(androgen-dependent) and PC-3 (androgen-independent) cells at environment- and diet-relevant concentrations.
Coumestrol and genistein both increased the number of LAPC-4 and PC-3 cells dramatically. Rapid alterations of
phospho- and total-cyclin D1 levels most closely correlated with the XE-induced changes in cell numbers. Sustained
activation (phosphorylation) of the extracellular signal-regulated kinases 1 and 2 as a prelude to generation of reactive
oxygen species also partially contributed to the XE’s effects on cell numbers. Early-stage cells expressed higher levels of
all 3 ERs (including those in membranes) than did late-stage cells; ER subtypes were variably involved in the signaling
responses. Taken together, these results show that each XE can elicit its own signature constellation of signaling
responses, highlighting the importance of managing exposures to both environmental and dietary XEs for existing
prostate tumors. These mechanisms may offer new cellular targets for therapy.

Introduction

Prostate cancers are well-known for their initial androgen
responsiveness, which diminishes with the progression of disease
stage. While the corresponding decrease in androgen receptor
(AR) levels that accompanies this decline in responses has been
well documented,1 little is known about the relationship of
tumor progression with the estrogen receptor (ER) types that
might be involved, such as those that are thought to mediate the
therapeutic effects of the pharmaceutical estrogen diethylstilbes-
trol (DES). There are many types of xenoestrogens (XEs) – exog-
enous estrogen-like compounds that bind to ER ligand binding
pockets.2-4 In normal or cancer cells, they imitate, compete with,
or disrupt the actions of physiological estrogens.5,6 Some XEs are
known to promote tumor development in many tissues by stimu-
lating inappropriate endocrine responses via ERs, promoting

angiogenesis, increasing DNA adducts, or altering the epige-
nome.7-12 Actions of XEs via ERs have also been shown to cause
the proliferation of established endocrine tumors or tumor cell
lines of many types, including those from brain, breast, kidney,
lung, pancreas, prostate, and testis.13-20

Alternatively, some XEs, especially dietary compounds, have
been credited with preventing tumors in some of these tis-
sues,21–24 highlighting a broad range of XE response profiles.
Genistein is a phytoestrogen found in soy products, fava beans,
and some coffee bean preparations25 that can cause cell cycle
arrest and growth inhibition at concentrations within the ranges
achieved by the diets of some cultures (10¡8 M to 10¡6 M), via
the down regulation of cyclin B.26,27 Coumestrol (found in red
clover, alfalfa sprouts, and also some soy products) can kill
breast and colon cancer cells by producing reactive oxygen spe-
cies (ROS).28 Resveratrol, found in grapes, can decrease cell
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numbers by increasing intracellular calcium levels, disrupting
G1/S progression, and stimulating apoptosis.29-33

XEs also include environmental contaminants from the man-
ufacture, use, or leachates of consumer products (e.g. plastics,
chlorinated pesticides, alkylphenol surfactants). Bisphenol A
(BPA) is a component of many plastic products (such as water
bottles, food containers, receipt paper, and the inner coatings of
food cans 34) and leaches from these products more readily with
heat or acidity. As a result, BPA is a common environmental and
human/animal contaminant 35 that has been shown to alter cell
proliferation,36 cell signaling through the activation of mitogen-
activated protein kinases (MAPKs)36-38 and intracellular calcium
levels,39,40 prostate cancer cell migration,41 and increase suscepti-
bility to certain diseases.7,42

Epidemiological studies generally support an association
between diets high in phytoestrogens and low cancer inci-
dence.43–45 African-Americans have a higher incidence of pros-
tate cancer,46 and dietary differences are being investigated as a
possible factor in tumor development and progression within
that population. East Asians consume high amounts of phytoes-
trogens, and their incidence of many types of cancer, including
prostate cancer, is much less.45 Asian diets contain high levels of
soy ingredients, with the best-known active estrogenic compo-
nents being daidzein, genistein, and coumestrol.47 Genetics may
also play a role in the sensitivity of various cancer-relevant mech-
anisms to estrogens, including the ability to metabolize dietary
phytoestrogens to more active compounds,48 though this can
also be due to the type of gut microbiome present.49

Until recently, most studies on XEs were focused on the gene
expression (genomic) consequences of exposures.50-52 Even at
high concentrations, XEs generally elicited only low levels of
transcriptional responses, so these compounds were thus labeled
as weak estrogens.50,53 However, XEs can also initiate non-geno-
mic responses, so classifying them as weak without taking these
more rapid cellular responses into consideration may be mislead-
ing.15,20,54-58 Some endogenous estrogen metabolites such as
estriol were formerly labeled as weak because of their limited abil-
ity to activate specific transcription, but have recently been found
to have profound effects on disease expression.59,60 Estriol, like
XEs can have quite potent effects on nongenomic responses.61

Because of this belief that XEs were weak, many past studies did
not evaluate estrogens at environmentally relevant low doses
(reviewed in62). Dose responses to estrogens are typically non-
monotonic and therefore must be assessed over a wide and
detailed range of concentrations (reaching down to the femtomo-
lar to nanomolar range) to predict their ability to act, especially
at relevant environmental and dietary levels.9,20,61,63

We have previously shown that XEs can rapidly activate cellu-
lar signaling pathways in tumor cells of other tissues (pituitary,
breast, adrenal), and when in combination with them can modify
the actions of physiological estrogens.37,38,55,64-66 MAPKs can be
rapidly activated or deactivated by XEs, leading to alterations in
such functional end points as proliferation, apoptosis, and pro-
lactin release.20,67 Moreover, these MAPK phosphorylations
[such as those for the extracellular signal regulated kinases
(ERKs), c-Jun N-terminal kinases (JNKs), and p38 kinase]

often occur at low physiological estrogen and XE
concentrations.20,37,68

We also recently demonstrated that estradiol (E2) and diethyl-
stilbestrol (DES) can rapidly stimulate or deactivate ERKs in
LAPC-4 and PC-3 prostate cancer cells,69 and when sustained,
cause ROS generation, contributing to a decrease in viable
cells.69,70 In addition, estrogen-induced rapid phosphorylation of
cyclin D1 led to its subsequent prompt degradation, which in
turn was correlated to the ability of E2 and DES to inhibit
growth of these cells.69 We will now investigate if some XEs also
alter the viability of prostate cancer tumor cells via these mecha-
nisms. Elucidating how these XEs function in early- vs. late-stage
prostate tumor cells could lead to selective advice for patients
about diet and exposure to environmental estrogens.

Materials and Methods

Cell lines and hormones
We chose cell lines representing the 2 main types of prostate

cancers – androgen-dependent vs. androgen-independent.
LAPC-4 androgen-dependent prostate cancer cells (passages 45–
50)71 were maintained to sub-confluence in phenol red-free
Iscove’s Modified Dulbecco’s Medium (IMDM; MediaTech,
Manassas, VA) with 10% fetal bovine serum (FBS, Atlanta Bio-
logicals, Lawrenceville, GA), 4 mM L-glutamine (Sigma-Aldrich,
St. Louis, MO), and 10¡9 M dihydrotestosterone (Sigma-
Aldrich). PC-3 androgen-independent prostate cancer cells (pas-
sages 18–23)72 were maintained by growth in phenol red-free
RPMI 1640 (Sigma-Aldrich) with 10% FBS and 2 mM L-gluta-
mine. Both cell lines were propagated at 37�C in 5% CO2. BPA,
coumestrol, genistein, and resveratrol (all from Sigma-Aldrich)
were dissolved in ethanol to a stock concentration of 10 mM
before serial dilution into IMDM or RPMI 1640 at concentra-
tions ranging from 10¡14M to 10¡6M (and a final EtOH con-
centration of 0.0001%).

MTT cell viability assay
Cells were plated at 5,000 cells/well in poly-D-lysine-coated

(BD Biosciences, Bedford, MA) 96-well assay plates, (Corning,
Tewksbury, MA), and then allowed to attach overnight. The
next day, XE treatments were added in 100 mL of medium with
1% 4x charcoal-stripped FBS. Extensive charcoal stripping of
serum was done to remove and thus minimize the effect of any
steroid hormones already present; these conditions were previ-
ously optimized to demonstrate effects of steroids and mimics on
cell proliferation for these cell lines. After three days, treatments
were removed and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT, Sigma-Aldrich) was added for 1 h.
Cells were then lysed and the signal read at 590 nm in a Wallac
1420 plate reader (Perkin Elmer, Waltham, MA).

Plate immunoassays
Phosphorylated proteins were recognized by antibodies (Abs)

specific for these post-translationally modified epitopes: pERK1/
2 (Thr202/Tyr204) and phospho-cyclin D1 (Thr286) (both
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from Cell Signaling, Danvers, MA). Changes in total cyclin D1
levels were measured by using an Ab to cyclin D1 recognizing
both modified and unmodified protein cyclin D1 (Cell Signaling
Cat. No. 2922). ER Abs used included ERa (MC-20, Santa
Cruz Biotechnology, Dallas, TX); ERb (clone 9.88, Sigma-
Aldrich); and GPR30 (Cat. No. NLS4271, Novus Biologicals,
Littleton, CO). Membrane and total ER levels were measured by
controlling for permeabilization of the cell membrane. A plate
immunoassay developed in our lab73 and used in many of our
past studies was recently adapted74 for use with the BIOMEK
FXP workstation (Beckman Coulter, Brea, CA) to automate the
majority of the plate assay’s liquid handling, decreasing experi-
mental variability and increasing experimental output.

Prostate cancer cells were plated at 10,000 cells/well in 96-well
assay plates, allowed to attach overnight, and given 100 mL of
medium with 1% 4x charcoal-stripped FBS for 48 h. Cells were
then treated with XEs for up to 60 min on the workstation, fol-
lowed by fixation (2% paraformaldehyde, 1% gluteraldehyde) §
permeabilization (0.15 M sucrose, 0.5% Nonidet P-40; to access
internal vs. extracellular epitopes). The primary Ab to the phos-
phorylated epitopes was then added and incubated with the cells
overnight. The next day, biotinylated anti-mouse/anti-rabbit IgG
secondary Ab (Vector Labs, Burlingame, CA) was added for 1 h.
Next, cells were incubated for 1 h with avidin-biotinylated con-
jugated alkaline phosphatase (ABC-AP, Vector Labs), then for
30 min with para-nitrophenylphosphate substrate (Thermo Sci-
entific, Rockford, IL), allowing the yellow color of the para-nitro-
phenyl product to accumulate. Plates were read at 405 nm in a
Wallac 1420 plate reader. Readings were then normalized to cell
number, estimated by the crystal violet dye (Sigma Aldrich) assay
as described previously.73

Subtype-selective ER antagonist assays
To further determine ER subtype

involvement in altering ROS forma-
tion or cyclin D1 phosphorylation, the
following ER antagonists were used at
their receptor-selective concentrations:
for ERa, 10¡7M MPP; for ERb,
10¡6M PHTPP; and for GPR30,
10¡6M G15 (all from Tocris Biosci-
ence, Minneapolis, MN). All were dis-
solved in ethanol to a stock
concentration of 10 mM, then serially
diluted into culture medium. Final
ethanol concentrations were 0.0001%,
which was used as vehicle control for
all studies. Cells were incubated with
antagonists for 30 min before XE
treatments.

ROS assays
Cells were plated at 10,000 cells/

well in a 96-well assay plate, then
allowed to attach overnight. Cells were
then treated with 100 mL of medium

containing 1% 4x charcoal-stripped FBS for 48 h. 2’,7’-Dichlor-
odihydrofluorescein diacetate (DCDHF, Enzo Life Sciences,
Farmingdale, NY; 15 mM) was loaded into cells for 1 h, and XE
treatments were then administered for 15 min. Hydrogen perox-
ide (Fisher Scientific, Pittsburg, PA) and ethanol (0.0001%)
were used as positive and negative controls, respectively. E2
(1 nM) was a positive control for previously determined estro-
genic responses.69 Dichlorofluorescein production, formed as a
result of ROS/DCDHF interaction, was measured at an excita-
tion of 485 nm, and an emission of 538 nm in a SpectraMax
M3 Multi-Mode Microplate Reader (Molecular Devices).

Statistics
All experiments were conducted a minimum of 3 times. One-

way analysis of variance was conducted for all experiments except
ER quantification, which was analyzed using a Student’s t-test. A
Holm-Sidak post hoc test was used to measure the significance of
each treatment versus the vehicle control. Significance was set at
P < 0.05, unless otherwise stated.

Results and Discussion

XE effects on the number of viable cells
XEs at environment- or diet-relevant concentrations caused

some increases in the numbers of LAPC-4 and PC-3 prostate
cancer cells, observed here after 3 d of exposure in media contain-
ing 1% charcoal-stripped serum (Figs. 1A & B). Coumestrol
increased viable cell numbers at all but the lowest concentration
assessed (10¡14M) in both cell lines (by >200% in LAPC-4 cells,
>400% in PC-3 cells). There was a strikingly different response
to genistein between cell lines representing different tumor stages;
genistein did not affect LAPC-4 cells, while it strongly stimulated

Figure 1. Cell number after 3 d of XE treatment. LAPC-4 and PC-3 prostate cancer cells were treated
with XEs and viable cells were measured by the MTT assay. In all figures throughout the manuscript
white symbols denote LAPC-4 cells and black symbols PC-3 cells. *denotes significance from vehicle (V)
controls at P < 0.05, and shaded horizontal bars represent the response to V § SEM. In this and other
graphs, where error bars are not visible, they were within the size of the symbol. Dietary or environmen-
tally relevant concentration ranges are shown by the solid horizontal bars below the graphs for each XE.
The insets show cell numbers after 3 d of E2 treatment, for comparison (and see 69).
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the growth of PC-3 cells (by »4-fold at concentrations from
0.1 nM to 1 mM, all levels achievable by some diets). BPA
caused a small stimulatory effect in LAPC-4 cells, at concentra-
tions >10¡12M (maximal increases of »40–50%), but had no
effect on PC-3 cells. Resveratrol showed minimal, but significant
stimulation compared to vehicle in both cell lines at most con-
centrations tested. For comparison to other estrogens assessed in
our other studies69 (see insets), even at physiological (10¡10–
10¡8M) concentrations E2 instead caused a significant decrease
in cell viability for both cell lines by »20–30%. The actions of
these dietary estrogens in causing prostate cancer cell growth are
perhaps unexpected, given the epidemiological evidence that cul-
tures with diets rich in genistein and coumestrol show decreased
levels of prostate cancer.75,76 However, some other studies have
also shown a prostate cell proliferation effect by these phytoestro-
gens.77–79

Subcellular location and levels of ERs
We next asked which types of ERs were present in LAPC-4

and PC-3 cell lines that could mediate these changes in viable
cell number. We had previously noted a variable dependence of
rapid responses on all 3 ER subtypes (determined by using selec-
tive antagonists) in our studies on E2 vs. DES treatment of these
cells.69 Plasma membrane versions of estrogen receptors (mERs)
are thought to mediate rapid signaling involved in cell number
changes in other cell types [reviewed in64,80,81], so we examined
the subcellular location of these receptors here. Using our plate
immunoassay § cell permeabilization with detergent (Fig. 2), we
observed that late-stage tumor cells (panel B) had much lower
expression of ERs than did early-stage cells (panel A; note the
»fold6- vertical scale difference between panels A and B), a fre-
quent finding among steroid receptors in endocrine cancers of
multiple types,82-84 although this evaluation for mERs in prostate
tumor cells is novel. We also saw that membrane receptor popu-
lations were much lower than total (and thus intracellular)
receptor forms in early-stage cells; the levels of mERs a and b
were about 20% and 24% of their total receptor populations,

respectively, as we have seen previously for the proportion of
membrane versions of these receptors in other tumor cell
types.85-87 Although much lower, we detected significant levels of
all 3 ER types in PC-3 cells. In these late-stage tumor cells the
membrane receptor population was a much larger percentage of
the total receptor numbers, perhaps in keeping with their more
undifferentiated state, as we have seen with membrane glucocor-
ticoid receptors in human lymphoma cells compared to normal
circulating lymphocytes.88 ERb predominated in LAPC-4 cells
(and to a lesser extent in PC-3 cells), as expected based on the lit-
erature regarding the dominance of this receptor type in normal
prostate tissues and the early-stage tumors that arise from
them.89,90 However, there were also significant levels of ERa and
GPR30, suggesting that they might also play a role in mediating
estrogenic mechanisms. Interestingly, we found that the sizable
amount of GPR30 was largely intracellular in LAPC-4 cells.
GPR30 has been identified in other prostate cancer studies, but
the subcellular location was not elucidated.91-93 The subcellular
location of GPR30 in other tissues and their cancers has been a
point of contention; different groups have demonstrated this
receptor form as either primarily in the plasma membrane or in
the endoplasmic reticulum.94,95

Phospho-ERK
Our next goal was to identify pathways and mechanisms

responsible for any changes in numbers of viable cells, and ERK
phosphorylation is one mechanism that has traditionally been
associated with cell proliferation.70 We selected an effective and
environment- or diet-relevant concentration for each XE studied
(10¡9M BPA, 10¡7M coumestrol, 10¡7M genistein, and
10¡8M resveratrol; see Fig. 1 for relevant ranges), and measured
their ability to elicit ERK phosphorylation in both cell lines over
60 min (Figs. 3A and B). We observed activation for all com-
pounds except genistein, but found that a sustained (60 min)
pERK response did not predict a XE’s positive influence on cell
number, as has been a long-held association.96,97 The most strik-
ing result was the difference between cell line-specific responses

after resveratrol treatment, which caused
a strong ERK deactivation (40%) in
LAPC-4 cells, while it had slightly
increased the number of viable cells
(Fig. 1). In PC-3 cells resveratrol rapidly
activated and sustained pERK (at
60 min), and caused modest cell prolif-
eration. BPA and coumestrol rapidly
stimulated ERK phosphorylation in
both cell lines (Figs. 3A and B), all with
sustained levels at 60 min, but had no
proliferation effects in late-stage cells.
Genistein rapidly though modestly deac-
tivated ERK in both cell lines, but sub-
stantially increased viable PC-3 cell
numbers. Only the activation of ERK
by coumestrol in both cell types corre-
lated with its ability to cause these cells
to proliferate. Therefore, these XEs

Figure 2. ER subtype (a, b, and GPR30) levels (total vs. membrane) in LAPC-4 and PC-3 prostate cancer
cells. The negative control samples used no primary antibody (Ab) for any of the ER subtypes, as indicated
by the first bar and the shaded bar extending horizontally across the graph (average §SEM ). *denotes
significance from controls at P< 0.05.
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elicited unique patterns of ERK activa-
tion/deactivation, which could contrib-
ute to cell survival, cell death, or
proliferation,70,96,98 but clearly more
mechanisms needed to be considered.

ROS generation
Others have recently associated sus-

tained ERK activations with ROS gen-
eration leading to cell killing,70 and we
recently extended this to the ability of a
physiological estrogen (E2) to induce
cell death in early-stage prostate cancer
cells.69 Therefore, we examined if XEs
(at optimal concentrations for such
ERK responses) could be linked to any
ROS elevations (measured at the peak
time of 15 min, time course not
shown). The positive controls for ROS
generation, including both H2O2 and
E2, caused robust ROS generation
(Figs. 4A and B), and as we saw previ-
ously, cell death.69 Most XE treatments
generated significant ROS levels regard-
less of whether they had caused sus-
tained ERK activation (Fig. 3), though
BPA and genistein did so only in one
cell line each. These ROS increases were all modest compared to
those caused by E2. Therefore, ROS elevation due to sustained
ERK activation was not considered to be a primary mechanistic
determinant of viable cell number in these studies. Perhaps
higher levels of ROS need to be generated to kill this cell type.

Therefore, these MAPK, and poten-
tially linked ROS responses, did not
individually predict cell proliferation vs.
cell killing effects. Possibly a more tradi-
tional route of ROS generation not
involving ERKs was involved in these
cells. Estrogens have been shown to
damage DNA,99 which can also cause
ROS generation.100,101 The ability of
these XEs to induce ROS was different
from that of E2,

69 further highlighting
the imperfect mimicry of physiological
estrogens by XEs. Overall, the pERK
and ROS responses to XE treatments in
both cell lines do not appear to be lone
driving mechanisms that elicit changes
in cell numbers. Therefore, we have to
consider the combined contribution of
these responses to an overall balance of
competing mechanisms (see below).

We observed previously that E2
required different ER subtypes to elicit
ROS responses in LAPC-4 vs. PC-3
cells.69 Here XEs also demonstrated

unique ER-use signatures for this response (Fig. 4). In LAPC-4
(early-stage) cells, BPA caused these modest ROS increases inde-
pendent of any known ERs, and genistein did not raise ROS lev-
els (Fig. 4A). The increases due to coumestrol required ERa and
GPR30, while resveratrol required only ERa. A somewhat

Figure 3. Phospho-ERK (pERK) levels in LAPC-4 and PC-3 cells after XE treatments. LAPC-4 and PC-3
cells were treated with 10–9M BPA, 10¡7M coumestrol, 10¡7M genistein, and 10¡8M resveratrol. pERK
was measured up to 60 min via the plate immunoassay. *denotes significance from vehicle (shown at
time 0) controls at P < 0.05, and horizontal shaded bars represent the response to vehicle § SEM.

Figure 4. ROS levels after treatment with 10¡10M E2, 10
¡6MH2O2, 10

¡9MBPA, 10¡7M coumestrol,
10¡7M genistein, and 10¡8M resveratrol, § ER subtype-selective antagonists. Antagonists (Antag)
were 10¡7M MMP for ERa; 10¡6M PHTPP for ERb; and 10¡6M G15 for GPR30. ROS levels were mea-
sured after 15 min of each XE treatment (the optimal response time). *denotes significance from vehi-
cle (V) controls at P < 0.05, while # denotes significance from paired XE treatment values (P < 0.05).
ERa inhibition was significantly different vs. resveratrol alone in PC-3 cells ($) at P < 0.09. The shaded
horizontal bars represent the response to vehicle (V) § SEM.
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different profile was evident in PC-3 (late-stage) cells, where cou-
mestrol and resveratrol both increased ROS via ERb, while genis-
tein stimulation of ROS did not require any known ERs, and
BPA did not cause a response (Fig. 4B). Clearly, the regulation
of this pathway via ERs became quite different as cell types pro-
gressed to a less differentiated state with far lower receptor num-
bers (Fig. 2). The involvement of more than one ER subtype in
some XE-generated responses also suggests the participation of
multiple pathways.

Total and phosphorylated cyclin D1
Control of cyclin D1 levels102,103 is a mechanism we previ-

ously identified as being a significant contributor to E2- or DES-
evoked declines in prostate cancer cell survival.69 Both of these
estrogens caused rapid cyclin D1 phospho-activation leading to
swift degradation of this cell-cycle protein in early-stage cells,
while this mechanism only operated for E2 in late stage cells.
Lower cyclin D1 levels was reflected also in lower cell numbers.
Similar responses to single effective concentrations of XEs
(changes in phosphorylation of cyclin D1; changes in total cyclin
levels) are shown in Fig. 5. Of the 4 XEs studied here, the 3 phy-
toestrogens (coumestrol, genistein, and resveratrol) all affected
cyclin D1 phosphorylation levels, though in distinctly different

directions, and differently for early- vs. late-stage cells (Figs. 5A
& B). In each case where cyclin D1 was phosphorylated, the cor-
responding expected rapid decline in total cyclin D1 levels
occurred (panels C and D). Interestingly, we observed significant
declines in total cyclin D1 as early as 5 min after genistein or res-
veratrol treatment (»10%), but the largest decreases for most
compounds were seen after 4 h. Coumestrol caused cyclin
dephosphorylation, resulting in cyclin D1 level increases, corre-
lating very well with its ability to increase cell numbers. Resvera-
trol signaling significantly phosphorylated cyclin D1 in both cell
lines, driving total cyclin D1 levels down, yet while eliciting very
small increases in cell proliferation, a less perfect correlation.
Genistein was the only compound that caused opposing effects
on these mechanisms in the 2 cell lines. In LAPC-4 cells, it
increased phosphorylated cyclin D1, causing its degradation, but
that did not correlate with measured changes in viable cell num-
bers. However, in PC-3 cells, genistein depressed cyclin phos-
phorylation, allowing increases in cyclin levels and correlating
with a strikingly robust cell proliferative response. BPA did not
affect cyclin D1 phosphorylation in either cell line, nor did it
change levels of total cyclin D1, in keeping with its minimal
effects on cell numbers. While these correlations generally go in
the expected direction, they do not entirely predict the degree of

the functional (cell number-changing)
responses. Therefore, we ultimately
considered all of these mechanisms
together (see summation in Fig. 6), to
see if other mechanisms in some cases
modified this dominant response to
cyclin D1 changes (see Conclusions).
Others have also shown that phytoes-
trogens can affect other cell-cycle pro-
tein levels,26,27,31,32,104 which in turn
affected the number of cells.

Other signaling pathways that we
have not examined here may also con-
tribute to the net change in cyclin D1
phosphorylation and consequent
decline in total protein levels. Glycogen
synthase kinase 3b, which is regulated
by the phosphoinositide 3-kinase/pro-
tein kinase B pathway (PI3K/Akt), has
also been shown to phosphorylate
cyclin D1 on Thr286, as well as regu-
late the protein’s subcellular location in
mouse fibroblasts.105 However, the
exact role of GSK-3b/PI3K/Akt in
driving phosphorylation of cyclin D1
has been debated, as Guo et al., found
that the activity of those pathways did
not change (during the relevant S-
phase), nor decrease cyclin D1 protein
levels in mouse or human fibroblasts.106

In addition, inhibition of GSK-3b in
MCF-7 breast cancer cells did not
completely disrupt cyclin D1 protein

Figure 5. Cyclin D1 phosphorylation and degradation by XEs, and inhibition by ER-selective antago-
nists. Cyclin phosphorylation was measured at 1–60 min, and total cyclin D1 levels over 16 h of XE
treatment. For 5A and 5B, LAPC-4 and PC-3 cells were pretreated with antagonists (Antag) for each of
the 3 ER subtypes: a (MPP), b (PHTPP), and GPR30 (G15,) and then treated with 10¡9M BPA, 10¡7M
coumestrol, 10¡7M genistein, 10¡8M resveratrol, 10¡10M E2 or 10

¡6M DES. Shaded horizontal bars rep-
resent V § SEM. * denotes significance compared to vehicle (V) at P < 0.05. # denotes significance
from paired XE treatment responses at P < 0.05. For 5C and 5D, LAPC-4 and PC-3 cells were treated
with each XE for the times indicated and total cyclin D1 levels were measured with a plate
immunoassay.
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degradation.107 Other pathways that can contribute to cyclin D1
degradation include p38, which we previously studied for activa-
tion by DES and E2

69 and did not include here because it was
activated for all cell types and treatments (and therefore may be
permissive, but not directly causative). Cyclin D1 phosphoryla-
tion through p-p38 seems to be especially prevalent in response
to the damage to DNA caused by environmental agents which
require rapid cellular responses to prevent propagation of geno-
mic mistakes.108,109 The Mirk/Dyrk1b kinase, active during G0/
G1, has also been shown to regulate cyclin D1 protein levels
through phosphorylation at Thr288.110 Therefore, multiple
pathways can cause phosphorylation of cyclin D1, but they may
influence degradation of cyclin D1 to varying degrees, and may
be tissue-selective.

We next examined which ER subtypes (a, b, or GPR30)
might be involved in the cyclin D1 phosphorylations, again using
selective antagonists for each receptor subtype. For genistein,
either the ERb or GPR30 antagonist reversed the cyclin D1
phosphorylation in LAPC-4 cells, but only the ERb antagonist
decreased p-cyclin D1 levels in PC-3 cells. Coumestrol appar-
ently did not utilize any of the known ER subtypes in LAPC-4
cells to decrease p-cyclin D1 levels, but ERa was required in PC-
3 cells. Coumestrol’s lack of dependence on any known receptor
subtype in LAPC-4 cells is surprising, given the plentiful expres-
sion of all of these receptors in that cell line. It is possible that the
low p-cyclin levels and thus larger errors in the measurement,
caused by coumestrol treatment made antagonist reversals diffi-
cult to detect. Resveratrol’s induction of p-cyclin D1 levels in
both cell lines showed a dependence on ERs a and GPR30 in
LAPC-4 cells, and on ERa in PC-3 cells. Therefore, each XE
showed a dependence on a different ER subtype or subtype com-
bination in the 2 cell lines. These dependencies are consistent
with what has been previously shown about receptor subtype
binding preferences for these XE compounds.6 For example,

resveratrol has a higher binding preference for ERa than for
ERb,2 while coumestrol and genistein are strong ERb agonists,3

but are still capable of binding to ERa.6,111,112 The predomi-
nance of ERb in these prostate cell lines may influence their
responses to these XEs that affect cell number. Mostly genomic
pathways have been examined in the past, such as the ability to
activate ER reporter constructs, with differences between cell
types for different XEs.113-115 Few comparisons for nongenomic
responses are available, though we previously observed different
MAPK activation patterns and mostly positive proliferative
responses to E2 and various XEs in GH3/B6/F10 pituitary
cells116 that have high mERa and low mERb levels.

Also consistent with our results are known XE effects that
do not involve these ERs. An example is the well-known
direct inhibitory effect of genistein on tyrosine kinases.117-119

In other instances, small lipophilic compounds like these can
intercalate into cell membranes and as “border lipids” influ-
ence the actions of proteins embedded in them. Lipophilic
estrogens can change membrane fluidity,120,121 especially
when they are present at relatively high concentrations (as is
true for most effective phytoestrogen concentrations resulting
from dietary exposures). Because changes in cell numbers are
best observed after 3 d, the nuclear-localized receptors forms
involved in slower transcriptional regulation122,123 may also
be relevant to these effects, which we did not examine in our
studies of these more novel rapid actions.

Another possible contributor to tumor cell behavior in
prostate cell lines is the tumor-suppressor p53.124 It is
mutated in LAPC-4 cells, and not present in PC-3 cells, and
therefore unlikely to drive estrogen-mediated prostate tumor
viability in our present studies. We also chose cell models for
our studies that do not present the added complication of
mutant ARs (such as in LnCaP cells125) to which estrogens
can more readily bind and elicit effects, especially at high

Figure 6. Summary of XE responses for mechanisms that affect the number of viable LAPC-4 vs. PC-3 cells. Estradiol is shown for comparison, summariz-
ing the data from our previous publication 69. Mechanisms in red text contribute to decreases in viable cell numbers, while mechanisms in green text
increase the number of viable cells. Gray text indicates mechanisms that did not make any contribution to changes in cell numbers. These mechanistic
contributions are summed in the red and green numbers in the upper right-hand corner of each box. D D change

www.tandfonline.com e995003-7Endocrine Disruptors

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ex
as

 M
ed

ic
al

 B
ra

nc
h]

 a
t 0

8:
17

 2
8 

A
pr

il 
20

15
 



concentrations. LAPC-4 cells have wild-type ARs and PC-3
cells do not express ARs.124

Conclusions

The estrogen-induced mechanism that dominated our effec-
tive predictions of cell growth behavior in these studies was the
rapid phosphorylation of cyclin D1, followed shortly thereafter
by its degradation. This mechanism largely predicted the primary
response to each XE in terms of cell number changes (except in
the case of resveratrol). However, no single mechanism entirely
predicted the degree of these XE-induced changes, so we also
examined the balance of the effects of other pathways (summa-
rized in Fig 6). In this figure, each of the mechanisms examined
in these studies for each cell type due to each XE is summarized
in colored text: red denotes actions causing decreases in viable
cells, while green represents mechanisms that increase cell num-
bers, and gray indicates no effect. These mechanistic contribu-
tions are summed in the red and green numbers in the upper
right-hand corner of each box. The modest effects of these XEs
are in contrast to the strong cell growth inhibitory/cell killing
effects we saw previously with E2; these previous conclusions

69

are shown in the first column of the table for the sake of compari-
son. E2 engaged a total of 7 signaling responses in LAPC-4 cells
and PC-3 cells – though in this table we list only the 4 that were
examined here that gave the best predictions of therapeutic
responses (decreases in cell numbers) to compare with XEs. Cou-
mestrol is a robust stimulator of cell growth in both early- and
late-stage prostate cancer cells, matching its strong positive effects
on cyclin D1 status and levels. The ability to activate sustained
ERK, and through it to increase ROS levels, did not decrease the
cyclin D1-driven outcome. Genistein’s different effects on early-
vs. late-stage cells could also be largely explained by the cyclin
D1 changes. Resveratrol had a very small effect in both cell lines,
though the altered cyclin D1 levels and the ROS generation
should have predicted a large decrease in cell viability, which was
not observed. BPA showed the smallest changes in these
responses that we examined, corresponding to only minimal
growth stimulation, in only LAPC-4 cells.

Once again, mechanistic responses (phosphorylations, cyclin
level changes, and ROS generation) to these varied estrogens

were documented to be very rapid, supporting the notion that
important tumor-altering effects can occur, or at least be
initiated, via nongenomic signaling mechanisms. This was
supported by our demonstration that membrane versions of
these receptors are present in these tumor cells. Our present and
recent 20,37,38,40,54,55,64,67,126 studies continue to support
conclusions about the ability of XEs to imperfectly mimic
physiological and pharmaceutical estrogens, as well as their
unique patterns of mechanism engagement and ER require-
ments.20,37,38,54,55,64,67,87,126,127 Because of these differences, it
is important to consider the potential effects of each XE individu-
ally at its typical culturally- or environmentally-relevant levels, to
determine what exposure advice these mechanistic studies may
point to. Given that some of these compounds can have pro-
found stimulatory effects on prostate cancer cell numbers (partic-
ularly the soy-related phytoestrogens coumestrol and genistein,
and especially in late-stage tumor cells), it may be prudent to
advise such patients against consuming foods that contain these
phytoestrogens. On a lower priority level, resveratrol and BPA
exposures may warrant similar warnings (Fig 6). Because BPA
and genistein had different effects on the number of viable cancer
cells, depending on prostate cancer stage, patients having recur-
ring or long-term tumors may need different exposure advice.
Because cell growth-promoting mechanisms receive stimulation
via different ER subtypes depending upon the compound, it may
be prudent to recommend blocking of these effects via all of these
receptors. Alternatively, testing of a patient’s individual tumor
receptor profiles may allow for tailoring of therapies with antago-
nists for individual receptor subtypes.

Our initial hypothesis was that some of these alternative die-
tary estrogens might fulfill the hoped for anti-tumor signaling
and cell growth effects. It appears that this is not the case, and
the best estrogen to mediate tumor cell killing effects is E2, pro-
filed in more detail for these mechanisms (and others) in our
previous report.69 Taken together, these findings should have
profound implications for dietary recommendations for prostate
cancer patients, as well for as the development of ER-specific
treatments to shrink tumors or slow tumor progression.
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